26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Managing the Effects of Noise From Ship Traffic, Seismic Surveying and Construction on Marine Mammals in Antarctica

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references170

          • Record: found
          • Abstract: found
          • Article: not found

          A synthesis of two decades of research documenting the effects of noise on wildlife

          Global increases in environmental noise levels - arising from expansion of human populations, transportation networks, and resource extraction - have catalysed a recent surge of research into the effects of noise on wildlife. Synthesising a coherent understanding of the biological consequences of noise from this literature is challenging. Taxonomic groups vary in auditory capabilities. A wide range of noise sources and exposure levels occur, and many kinds of biological responses have been observed, ranging from individual behaviours to changes in ecological communities. Also, noise is one of several environmental effects generated by human activities, so researchers must contend with potentially confounding explanations for biological responses. Nonetheless, it is clear that noise presents diverse threats to species and ecosystems and salient patterns are emerging to help inform future natural resource-management decisions. We conducted a systematic and standardised review of the scientific literature published from 1990 to 2013 on the effects of anthropogenic noise on wildlife, including both terrestrial and aquatic studies. Research to date has concentrated predominantly on European and North American species that rely on vocal communication, with approximately two-thirds of the data set focussing on songbirds and marine mammals. The majority of studies documented effects from noise, including altered vocal behaviour to mitigate masking, reduced abundance in noisy habitats, changes in vigilance and foraging behaviour, and impacts on individual fitness and the structure of ecological communities. This literature survey shows that terrestrial wildlife responses begin at noise levels of approximately 40 dBA, and 20% of papers documented impacts below 50 dBA. Our analysis highlights the utility of existing scientific information concerning the effects of anthropogenic noise on wildlife for predicting potential outcomes of noise exposure and implementing meaningful mitigation measures. Future research directions that would support more comprehensive predictions regarding the magnitude and severity of noise impacts include: broadening taxonomic and geographical scope, exploring interacting stressors, conducting larger-scale studies, testing mitigation approaches, standardising reporting of acoustic metrics, and assessing the biological response to noise-source removal or mitigation. The broad volume of existing information concerning the effects of anthropogenic noise on wildlife offers a valuable resource to assist scientists, industry, and natural-resource managers in predicting potential outcomes of noise exposure.
            Bookmark
            • Record: found
            • Abstract: not found
            • Book: not found

            The Sonar of Dolphins

            Whitlow Au (1993)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evidence that ship noise increases stress in right whales.

              Baleen whales (Mysticeti) communicate using low-frequency acoustic signals. These long-wavelength sounds can be detected over hundreds of kilometres, potentially allowing contact over large distances. Low-frequency noise from large ships (20-200 Hz) overlaps acoustic signals used by baleen whales, and increased levels of underwater noise have been documented in areas with high shipping traffic. Reported responses of whales to increased noise include: habitat displacement, behavioural changes and alterations in the intensity, frequency and intervals of calls. However, it has been unclear whether exposure to noise results in physiological responses that may lead to significant consequences for individuals or populations. Here, we show that reduced ship traffic in the Bay of Fundy, Canada, following the events of 11 September 2001, resulted in a 6 dB decrease in underwater noise with a significant reduction below 150 Hz. This noise reduction was associated with decreased baseline levels of stress-related faecal hormone metabolites (glucocorticoids) in North Atlantic right whales (Eubalaena glacialis). This is the first evidence that exposure to low-frequency ship noise may be associated with chronic stress in whales, and has implications for all baleen whales in heavy ship traffic areas, and for recovery of this endangered right whale population.
                Bookmark

                Author and article information

                Journal
                Frontiers in Marine Science
                Front. Mar. Sci.
                Frontiers Media SA
                2296-7745
                November 6 2019
                November 6 2019
                : 6
                Article
                10.3389/fmars.2019.00647
                fd9b35d1-6687-4f89-9b22-552213226436
                © 2019

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article