32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Beta Lactams Antibiotic Ceftriaxone Modulates Seizures, Oxidative Stress and Connexin 43 Expression in Hippocampus of Pentylenetetrazole Kindled Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and Purpose:

          This study aimed to investigate the effect of ceftriaxone on oxidative stress and gap junction protein (connexin 43, Cx-43) expression in pentylenetetrazole (PTZ) induced kindling model.

          Methods:

          Twenty four Sprague dawely rats were divided into 3 equal groups (a) normal group: normal rats. (b) PTZ kindled group: received PTZ at the dose of 50 mg/kg via intraperitoneal injection (i.p.) every other day for 2 weeks (c) ceftriaxone treated group: received ceftriaxone at the dose 200 mg\kg/12 hrs via i.p. injection daily from the 6th dose of PTZ for 3 days. Racine score, latency before beginning the first myoclonic jerk and duration of the jerks used as parameters of behavioral assessment. Immunohistopathological study for Cx-43 expression in hippocampus and measurement of markers of oxidative stress (malondialdehyde [MDA], low reduced glutathione [GSH] and catalase [CAT]) in hippocampal neurons were done.

          Results:

          PTZ kindling was associated with behavioral changes (in the form high stage of Racine score, long seizure duration and short latency for the first jerk), enhanced oxidative stress state (as demonstrated by high MDA, low GSH and CAT) and up regulation of Cx43 in hippocampal regions. While, ceftriaxone treatment ameliorated, significantly, PTZ-induced convulsions and caused significant improvement in oxidative stress markers and Cx-43 expression in hippocamal regions ( p < 0.05).

          Conclusions:

          These findings support the anticonvulsive effects of some beta-lactams antibiotics which could offer a possible contributor in the basic treatment of temporal lobe epilepsy. This effect might be due to reduction of oxidative stress and Cx43 expression.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1.

          Extracellular levels of the excitatory neurotransmitter glutamate in the nervous system are maintained by transporters that actively remove glutamate from the extracellular space. Homozygous mice deficient in GLT-1, a widely distributed astrocytic glutamate transporter, show lethal spontaneous seizures and increased susceptibility to acute cortical injury. These effects can be attributed to elevated levels of residual glutamate in the brains of these mice.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression.

            Glutamate is the principal excitatory neurotransmitter in the nervous system. Inactivation of synaptic glutamate is handled by the glutamate transporter GLT1 (also known as EAAT2; refs 1, 2), the physiologically dominant astroglial protein. In spite of its critical importance in normal and abnormal synaptic activity, no practical pharmaceutical can positively modulate this protein. Animal studies show that the protein is important for normal excitatory synaptic transmission, while its dysfunction is implicated in acute and chronic neurological disorders, including amyotrophic lateral sclerosis (ALS), stroke, brain tumours and epilepsy. Using a blinded screen of 1,040 FDA-approved drugs and nutritionals, we discovered that many beta-lactam antibiotics are potent stimulators of GLT1 expression. Furthermore, this action appears to be mediated through increased transcription of the GLT1 gene. beta-Lactams and various semi-synthetic derivatives are potent antibiotics that act to inhibit bacterial synthetic pathways. When delivered to animals, the beta-lactam ceftriaxone increased both brain expression of GLT1 and its biochemical and functional activity. Glutamate transporters are important in preventing glutamate neurotoxicity. Ceftriaxone was neuroprotective in vitro when used in models of ischaemic injury and motor neuron degeneration, both based in part on glutamate toxicity. When used in an animal model of the fatal disease ALS, the drug delayed loss of neurons and muscle strength, and increased mouse survival. Thus these studies provide a class of potential neurotherapeutics that act to modulate the expression of glutamate neurotransmitter transporters via gene activation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Connexin-based gap junction hemichannels: gating mechanisms.

              Connexins (Cxs) form hemichannels and gap junction channels. Each gap junction channel is composed of two hemichannels, also termed connexons, one from each of the coupled cells. Hemichannels are hexamers assembled in the ER, the Golgi, or a post Golgi compartment. They are transported to the cell surface in vesicles and inserted by vesicle fusion, and then dock with a hemichannel in an apposed membrane to form a cell-cell channel. It was thought that hemichannels should remain closed until docking with another hemichannel because of the leak they would provide if their permeability and conductance were like those of their corresponding cell-cell channels. Now it is clear that hemichannels formed by a number of different connexins can open in at least some cells with a finite if low probability, and that their opening can be modulated under various physiological and pathological conditions. Hemichannels open in different kinds of cells in culture with conductance and permeability properties predictable from those of the corresponding gap junction channels. Cx43 hemichannels are preferentially closed in cultured cells under resting conditions, but their open probability can be increased by the application of positive voltages and by changes in protein phosphorylation and/or redox state. In addition, increased activity can result from the recruitment of hemichannels to the plasma membrane as seen in metabolically inhibited astrocytes. Mutations of connexins that increase hemichannel open probability may explain cellular degeneration in several hereditary diseases. Taken together, the data indicate that hemichannels are gated by multiple mechanisms that independently or cooperatively affect their open probability under physiological as well as pathological conditions.
                Bookmark

                Author and article information

                Journal
                J Epilepsy Res
                J Epilepsy Res
                Journal of Epilepsy Research
                Korean Epilepsy Society
                2233-6249
                2233-6257
                June 2016
                30 June 2016
                : 6
                : 1
                : 8-15
                Affiliations
                [1 ]Department of Medical Physiology, Mansoura University, Mansoura, Egypt
                [2 ]Faculty of Medicine, Mansoura University, Mansoura, Egypt
                [3 ]Chemistry and Drug Metabolism, IRP, National Institute on Drug Abuse, National Institutes of Health, Biomedical Research Center, Baltimore, USA
                Author notes
                Corresponding author: Abdelaziz M. Hussein, Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt, Tel. +20502245230, Fax. +20502248203, E-mail; zizomenna28@ 123456yahoo.com
                Article
                er-6-1-8
                10.14581/jer.16002
                4933683
                27390674
                fd9bd377-256f-44bf-84bc-6827f93d8797
                Copyright © 2016 Korean Epilepsy Society

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 03 April 2016
                : 30 May 2016
                Categories
                Original Article

                pentylenetetrazole,ceftriaxone,connexin 43,epilepsy,malondialdehyde (mda),rats

                Comments

                Comment on this article