45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Interleukin 6 in autoimmune and inflammatory diseases: a personal memoir

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this review, the author discusses the research that led to the identification and characterization of interleukin 6 (IL-6), including his own experience isolating IL-6, and the roles this cytokine has on autoimmune and inflammatory diseases. The cDNAs encoding B-cell stimulatory factor 2 (BSF-2), interferon (IFN)-β2 and a 26-kDa protein were independently cloned in 1986, which in turn led to the identification of each. To resolve the confusing nomenclature, these identical molecules were named IL-6. Characterization of IL-6 revealed a multifunctional cytokine that is involved in not only immune responses but also hematopoiesis, inflammation, and bone metabolism. Moreover, IL-6 makes significant contributions to such autoimmune and inflammatory diseases as rheumatoid arthritis (RA).

          IL-6 activates both the STAT3 and SHP2/Gab/MAPK signaling pathways via the gp130 signal transducer. F759 mice, which contain a single amino-acid substitution in gp130 (Y759F) and show enhanced STAT3 activation, spontaneously develop a RA-like arthritis as they age. F759 arthritis is dependent on CD4 + T cells, IL-6, and IL-17A, and is enhanced by the pX gene product from human T cell leukemia virus 1 (HTLV-1). Arthritis development in these mice requires that the F759 mutation is present in nonhematopoietic cells, but not in immune cells, highlighting the important role of the interaction between nonimmune tissues and the immune system in this disease. Furthermore, this interaction is mediated by the IL-6 amplifier through STAT3 and NF-κB. Ultimately, this model may represent a general etiologic process underlying other autoimmune and inflammatory diseases. More importantly, the understanding of IL-6 has paved the way for new therapeutic approaches for RA and other autoimmune and inflammatory diseases.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17.

          Interleukin 17 (IL-17) has been linked to autoimmune diseases, although its regulation and function have remained unclear. Here we have evaluated in vitro and in vivo the requirements for the differentiation of naive CD4 T cells into effector T helper cells that produce IL-17. This process required the costimulatory molecules CD28 and ICOS but was independent of the cytokines and transcription factors required for T helper type 1 or type 2 differentiation. Furthermore, both IL-4 and interferon-gamma negatively regulated T helper cell production of IL-17 in the effector phase. In vivo, antibody to IL-17 inhibited chemokine expression in the brain during experimental autoimmune encephalomyelitis, whereas overexpression of IL-17 in lung epithelium caused chemokine production and leukocyte infiltration. Thus, IL-17 expression characterizes a unique T helper lineage that regulates tissue inflammation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells.

            We describe de novo generation of IL-17-producing T cells from naive CD4 T cells, induced in cocultures of naive CD4 T cells and naturally occurring CD4+ CD25+ T cells (Treg) in the presence of TLR3, TLR4, or TLR9 stimuli. Treg can be substituted by TGFbeta1, which, together with the proinflammatory cytokine IL-6, supports the differentiation of IL-17-producing T cells, a process that is amplified by IL-1beta and TNFalpha. We could not detect a role for IL-23 in the differentiation of IL-17-producing T cells but confirmed its importance for their survival and expansion. Transcription factors GATA-3 and T-bet, as well as its target Hlx, are absent in IL-17-producing T cells, and they do not express the negative regulator for TGFbeta signaling, Smad7. Our data indicate that, in the presence of IL-6, TGFbeta1 subverts Th1 and Th2 differentiation for the generation of IL-17-producing T cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain.

              Interleukin-12 (IL-12) is a heterodimeric molecule composed of p35 and p40 subunits. Analyses in vitro have defined IL-12 as an important factor for the differentiation of naive T cells into T-helper type 1 CD4+ lymphocytes secreting interferon-gamma (refs 1, 2). Similarly, numerous studies have concluded that IL-12 is essential for T-cell-dependent immune and inflammatory responses in vivo, primarily through the use of IL-12 p40 gene-targeted mice and neutralizing antibodies against p40. The cytokine IL-23, which comprises the p40 subunit of IL-12 but a different p19 subunit, is produced predominantly by macrophages and dendritic cells, and shows activity on memory T cells. Evidence from studies of IL-23 receptor expression and IL-23 overexpression in transgenic mice suggest, however, that IL-23 may also affect macrophage function directly. Here we show, by using gene-targeted mice lacking only IL-23 and cytokine replacement studies, that the perceived central role for IL-12 in autoimmune inflammation, specifically in the brain, has been misinterpreted and that IL-23, and not IL-12, is the critical factor in this response. In addition, we show that IL-23, unlike IL-12, acts more broadly as an end-stage effector cytokine through direct actions on macrophages.
                Bookmark

                Author and article information

                Journal
                Proc Jpn Acad Ser B Phys Biol Sci
                PJAB
                Proceedings of the Japan Academy. Series B, Physical and Biological Sciences
                The Japan Academy (Tokyo, Japan )
                0386-2208
                1349-2896
                21 July 2010
                : 86
                : 7
                : 717-730
                Affiliations
                [*1 ]Laboratory of Developmental Immunology, JST-CREST, Graduate School of Frontier Biosciences, Graduate School of Medicine, and WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
                [*2 ]Laboratory of Cytokine Signaling, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan.
                Author notes
                []Correspondence should be addressed: T. Hirano, Laboratory of Developmental Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan (e-mail: hirano@molonc.med.osaka-u.ac.jp).

                (Communicated by Tasuku HONJO, M.J.A.)

                Article
                pjab-86-717
                10.2183/pjab.86.717
                3066534
                20689230
                fda3203d-46f4-4ce8-9302-c419dcde4d6b
                © 2010 The Japan Academy

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 December 2009
                : 20 May 2010
                Categories
                Review

                Life sciences
                cytokine,interleukin 6,immune response,inflammation,autoimmune disease,rheumatoid arthritis

                Comments

                Comment on this article