2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PQQ Supplementation and SARS-CoV-2 Spike Protein-Induced Heart Inflammation

      letter

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          SARS-CoV-2 spike protein-induced heart inflammation may originate from either COVID-19 infection or the administration of COVID-19 mRNA vaccines. As pyrroloquinoline quinone (PQQ) is a scavenger of free radicals, redox cofactor, and antioxidant which supports cognitive and mitochondrial functions, supplementation with PQQ could have a positive effect to reduce heart inflammation after COVID-19 mRNA vaccines. However, there is no evidence yet for this opportunity in the literature. Cellular and animal model results are missing. Similarly, no clinical trials have been conducted. While it is recommended to measure the levels of the cardiac biomarkers before and after COVID-19 vaccination, no recommendation can be made about supplementation with PQQ, which, however, we note has no contraindication.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          mRNA vaccines — a new era in vaccinology

          mRNA vaccines represent a promising alternative to conventional vaccine approaches because of their high potency, capacity for rapid development and potential for low-cost manufacture and safe administration. However, their application has until recently been restricted by the instability and inefficient in vivo delivery of mRNA. Recent technological advances have now largely overcome these issues, and multiple mRNA vaccine platforms against infectious diseases and several types of cancer have demonstrated encouraging results in both animal models and humans. This Review provides a detailed overview of mRNA vaccines and considers future directions and challenges in advancing this promising vaccine platform to widespread therapeutic use.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            COVID-19 and Cardiovascular Disease

            Coronavirus disease 2019 (COVID-19) is a global pandemic affecting 185 countries and >3 000 000 patients worldwide as of April 28, 2020. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2, which invades cells through the angiotensin-converting enzyme 2 receptor. Among patients with COVID-19, there is a high prevalence of cardiovascular disease, and >7% of patients experience myocardial injury from the infection (22% of critically ill patients). Although angiotensin-converting enzyme 2 serves as the portal for infection, the role of angiotensin-converting enzyme inhibitors or angiotensin receptor blockers requires further investigation. COVID-19 poses a challenge for heart transplantation, affecting donor selection, immunosuppression, and posttransplant management. There are a number of promising therapies under active investigation to treat and prevent COVID-19.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives

              Coronavirus disease 2019 (COVID-19), caused by a strain of coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic that has affected the lives of billions of individuals. Extensive studies have revealed that SARS-CoV-2 shares many biological features with SARS-CoV, the zoonotic virus that caused the 2002 outbreak of severe acute respiratory syndrome, including the system of cell entry, which is triggered by binding of the viral spike protein to angiotensin-converting enzyme 2. Clinical studies have also reported an association between COVID-19 and cardiovascular disease. Pre-existing cardiovascular disease seems to be linked with worse outcomes and increased risk of death in patients with COVID-19, whereas COVID-19 itself can also induce myocardial injury, arrhythmia, acute coronary syndrome and venous thromboembolism. Potential drug–disease interactions affecting patients with COVID-19 and comorbid cardiovascular diseases are also becoming a serious concern. In this Review, we summarize the current understanding of COVID-19 from basic mechanisms to clinical perspectives, focusing on the interaction between COVID-19 and the cardiovascular system. By combining our knowledge of the biological features of the virus with clinical findings, we can improve our understanding of the potential mechanisms underlying COVID-19, paving the way towards the development of preventative and therapeutic solutions.
                Bookmark

                Author and article information

                Journal
                Nat Prod Commun
                Nat Prod Commun
                NPX
                spnpx
                Natural Product Communications
                SAGE Publications (Sage CA: Los Angeles, CA )
                1934-578X
                1555-9475
                8 March 2022
                March 2022
                8 March 2022
                : 17
                : 3
                : 1934578X221080929
                Affiliations
                [1-1934578X221080929]Independent Scientist, Johnsonville Road, Johnsonville, Wellington 6037, New Zealand
                Author notes
                Author information
                https://orcid.org/0000-0002-3374-0238
                Article
                10.1177_1934578X221080929
                10.1177/1934578X221080929
                8905048
                fdac78b1-2613-41d5-b2f9-60da5d5eaff2
                © The Author(s) 2022

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 27 November 2021
                : 31 January 2022
                Categories
                Letter to the Editor
                Custom metadata
                ts19

                pyrroloquinoline quinone,pyrroloquinoline quinone supplementation,mrna vaccines

                Comments

                Comment on this article