3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      N-acetylcysteine amide provides neuroprotection via Nrf2-ARE pathway in a mouse model of traumatic brain injury

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Increasing evidence demonstrate N-acetylcysteine amide (NACA) provides neuroprotection and attenuated oxidative stress in rats following traumatic brain injury (TBI). The nuclear factor erythroid 2-related factor 2 (Nrf2)–antioxidant response element (ARE) signal pathway is activated after TBI and provides a protective effect against TBI. However, the function and mechanism of NACA in mice after TBI remain unknown. This study was to evaluate the neuroprotection of NACA and the potential action of the Nrf2-ARE pathway in a weight-drop mouse model of TBI.

          Materials and methods

          Four groups of animals were randomly divided into sham, TBI, TBI+vehicle, and TBI+NACA (100 mg/kg, administered intraperitoneally). The protein levels of Nrf2, heme oxygenase-1 (HO-1), NAD(P)H: quinine oxidoreductase-1 (NQO1), cleaved caspase-3 and the mRNA levels of HO-1 and NQO1 were detected. The neurobehavior, neuronal degeneration, apoptosis and oxidative stress were also assessed.

          Results

          Treatment with NACA significantly improved neurologic status at days 1 and 3 following TBI. Moreover, NACA promoted Nrf2 activation a day after TBI. The protein and mRNA levels of HO-1 and NQO1 were upregulated by NACA. Meanwhile, NACA treatment significantly reduced the level of malondialdehyde (MDA) and enhanced the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx), which indicated NACA attenuated oxidative stress following TBI. NACA prominently reduced the protein level of cleaved caspase-3 and TUNEL-positive cells, indicating its antiapoptotic effect. Additionally, Fluoro-Jade C staining showed NACA alleviated neuronal degeneration a day after TBI.

          Conclusions

          Our study reveals that NACA potentially provides neuroprotection via the activation of the Nrf2-ARE signaling pathway after TBI in mice.

          Related collections

          Most cited references 24

          • Record: found
          • Abstract: found
          • Article: not found

          Traumatic brain injury: oxidative stress and neuroprotection.

          A vast amount of circumstantial evidence implicates high energy oxidants and oxidative stress as mediators of secondary damage associated with traumatic brain injury. The excessive production of reactive oxygen species due to excitotoxicity and exhaustion of the endogenous antioxidant system induces peroxidation of cellular and vascular structures, protein oxidation, cleavage of DNA, and inhibition of the mitochondrial electron transport chain. Different integrated responses exist in the brain to detect oxidative stress, which is controlled by several genes termed vitagens. Vitagens encode for cytoprotective heat shock proteins, and thioredoxin and sirtuins. This article discusses selected aspects of secondary brain injury after trauma and outlines key mechanisms associated with toxicity, oxidative stress, inflammation, and necrosis. Finally, this review discusses the role of different oxidants and presents potential clinically relevant molecular targets that could be harnessed to treat secondary injury associated with brain trauma.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Luteolin provides neuroprotection in models of traumatic brain injury via the Nrf2-ARE pathway.

            Luteolin has recently been proven to exert neuroprotection in a variety of neurological diseases; however, its roles and the underlying mechanisms in traumatic brain injury are not fully understood. The present study was aimed to investigate the neuroprotective effects of luteolin in models of traumatic brain injury (TBI) and the possible role of the Nrf2-ARE pathway in the putative neuroprotection. A modified Marmarou׳s weight-drop model in mice and the scratch model in mice primary cultured neurons were used to induce TBI. We determined that luteolin significantly ameliorated secondary brain injury induced by TBI, including neurological deficits, brain water content, and neuronal apoptosis. Furthermore, the level of malondialdehyde (MDA) and the activity of glutathione peroxidase (GPx) were restored in the group with luteolin treatment. in vitro studies showed that luteolin administration lowered the intracellular reactive oxygen species (ROS) level and increased the neuron survival. Moreover, luteolin enhanced the translocation of Nrf2 to the nucleus both in vivo and in vitro, which was proved by the results of Western blot, immunohistochemistry, and electrophoretic mobility shift assay (EMSA). Subsequently upregulation of the expression of the downstream factors such as heme oxygenase 1 (HO1) and quinone oxidoreductase 1 (NQO1) was also examined. However, luteolin treatment failed to provide neuroprotection after TBI in Nrf2(-/-) mice. Taken together, these in vivo and in vitro data demonstrated that luteolin provided neuroprotective effects in the models of TBI, possibly through the activation of the Nrf2-ARE pathway. Copyright © 2014 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Efficacy of N-Acetyl Cysteine in Traumatic Brain Injury

              In this study, using two different injury models in two different species, we found that early post-injury treatment with N-Acetyl Cysteine (NAC) reversed the behavioral deficits associated with the TBI. These data suggest generalization of a protocol similar to our recent clinical trial with NAC in blast-induced mTBI in a battlefield setting [1], to mild concussion from blunt trauma. This study used both weight drop in mice and fluid percussion injury in rats. These were chosen to simulate either mild or moderate traumatic brain injury (TBI). For mice, we used novel object recognition and the Y maze. For rats, we used the Morris water maze. NAC was administered beginning 30–60 minutes after injury. Behavioral deficits due to injury in both species were significantly reversed by NAC treatment. We thus conclude NAC produces significant behavioral recovery after injury. Future preclinical studies are needed to define the mechanism of action, perhaps leading to more effective therapies in man.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2018
                04 December 2018
                : 12
                : 4117-4127
                Affiliations
                [1 ]Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, China, njhdwang@ 123456hotmail.com
                [2 ]Department of Neurosurgery, Jinling Hospital, Jiangsu, China
                Author notes
                Correspondence: Han-dong Wang, Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, Jiangsu 210002, China, Tel +86 25 5180 5396, Fax +86 25 8481 7581, Email njhdwang@ 123456hotmail.com
                Article
                dddt-12-4117
                10.2147/DDDT.S179227
                6284532
                © 2018 Zhou et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Comments

                Comment on this article