18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Current methods of collagen cross-linking: Review

      ,
      International Journal of Biological Macromolecules
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references131

          • Record: found
          • Abstract: not found
          • Article: not found

          Chitin and chitosan: Properties and applications

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biodegradation, biodistribution and toxicity of chitosan.

            Chitosan is a natural polysaccharide that has attracted significant scientific interest during the last two decades. It is a potentially biologically compatible material that is chemically versatile (-NH2 groups and various M(w)). These two basic properties have been used by drug delivery and tissue engineering scientists to create a plethora of formulations and scaffolds that show promise in healthcare. Despite the high number of published studies, chitosan is not approved by the FDA for any product in drug delivery, and as a consequence very few biotech companies are using this material. This review will aim to provide information on these biological properties that affect chitosan's safe use in drug delivery. The term "Chitosan" represents a large group of structurally different chemical entities that may show different biodistribution, biodegradation and toxicological profiles. Here we aim to review research in this area and critically discuss chitosan's potential to be used as a generally regarded as safe (GRAS) material. 2009 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering.

              New generations of synthetic biomaterials are being developed at a rapid pace for use as three-dimensional extracellular microenvironments to mimic the regulatory characteristics of natural extracellular matrices (ECMs) and ECM-bound growth factors, both for therapeutic applications and basic biological studies. Recent advances include nanofibrillar networks formed by self-assembly of small building blocks, artificial ECM networks from protein polymers or peptide-conjugated synthetic polymers that present bioactive ligands and respond to cell-secreted signals to enable proteolytic remodeling. These materials have already found application in differentiating stem cells into neurons, repairing bone and inducing angiogenesis. Although modern synthetic biomaterials represent oversimplified mimics of natural ECMs lacking the essential natural temporal and spatial complexity, a growing symbiosis of materials engineering and cell biology may ultimately result in synthetic materials that contain the necessary signals to recapitulate developmental processes in tissue- and organ-specific differentiation and morphogenesis.
                Bookmark

                Author and article information

                Journal
                International Journal of Biological Macromolecules
                International Journal of Biological Macromolecules
                Elsevier BV
                01418130
                October 2020
                October 2020
                : 161
                : 550-560
                Article
                10.1016/j.ijbiomac.2020.06.075
                32534089
                fdad5fe3-82df-4351-a478-910a30f2dfb1
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article