35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Muscularis macrophages: Key players in intestinal homeostasis and disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          • Muscularis macrophages densily colonize the outermost layer of the gastrointestinal tract.

          • Muscularis macrophages communicate with enteric neurons in a bidirectional matter.

          • Muscularis macrophages are tissue-protective but can contribute to disease.

          • Current challenges are to decipher therapeutic potentials of muscularis macrophages.

          Abstract

          Macrophages residing in the muscularis externa of the gastrointestinal tract are highly specialized cells that are essential for tissue homeostasis during steady-state conditions as well as during disease. They are characterized by their unique protective functional phenotype that is undoubtedly a consequence of the reciprocal interaction with their environment, including the enteric nervous system. This muscularis macrophage-neuron interaction dictates intestinal motility and promotes tissue-protection during injury and infection, but can also contribute to tissue damage in gastrointestinal disorders such as post-operative ileus and gastroparesis. Although the importance of muscularis macrophages is clearly recognized, different aspects of these cells remain largely unexplored such their origin, longevity and instructive signals that determine their function and phenotype. In this review, we will discuss the phenotype, functions and origin of muscularis macrophages during steady-state and disease conditions. We will highlight the bidirectional crosstalk with neurons and potential therapeutic strategies that target and manipulate muscularis macrophages to restore their protective signature as a treatment for disease.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: not found

          Alveolar macrophages: plasticity in a tissue-specific context.

          Alveolar macrophages exist in a unique microenvironment and, despite historical evidence showing that they are in close contact with the respiratory epithelium, have until recently been investigated in isolation. The microenvironment of the airway lumen has a considerable influence on many aspects of alveolar macrophage phenotype, function and turnover. As the lungs adapt to environmental challenges, so too do alveolar macrophages adapt to accommodate the ever-changing needs of the tissue. In this Review, we discuss the unique characteristics of alveolar macrophages, the mechanisms that drive their adaptation and the direct and indirect influences of epithelial cells on them. We also highlight how airway luminal macrophages function as sentinels of a healthy state and how they do not respond in a pro-inflammatory manner to antigens that do not disrupt lung structure. The unique tissue location and function of alveolar macrophages distinguish them from other macrophage populations and suggest that it is important to classify macrophages according to the site that they occupy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria.

            Tolerance to food antigen manifests in the absence and/or suppression of antigen-specific immune responses locally in the gut but also systemically, a phenomenon known as oral tolerance. Oral tolerance is thought to originate in the gut-draining lymph nodes, which support the generation of FoxP3(+) regulatory T (Treg) cells. Here we use several mouse models to show that Treg cells, after their generation in lymph nodes, need to home to the gut to undergo local expansion to install oral tolerance. Proliferation of Treg cells in the intestine and production of interleukin-10 by gut-resident macrophages was blunted in mice deficient in the chemokine (C-X3-C motif) receptor 1 (CX3CR1). We propose a model of stepwise oral tolerance induction comprising the generation of Treg cells in the gut-draining lymph nodes, followed by migration into the gut and subsequent expansion of Treg cells driven by intestinal macrophages. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Origin of the lamina propria dendritic cell network.

              CX(3)CR1(+) and CD103(+) dendritic cells (DCs) in intestinal lamina propria play a key role in mucosal immunity. However, the origin and the developmental pathways that regulate their differentiation in the lamina propria remain unclear. We showed that monocytes gave rise exclusively to CD103(-)CX(3)CR1(+) lamina propria DCs under the control of macrophage-colony-stimulating factor receptor (M-CSFR) and Fms-like thyrosine kinase 3 (Flt3) ligands. In contrast, common DC progenitors (CDP) and pre-DCs, which give rise to lymphoid organ DCs but not to monocytes, differentiated exclusively into CD103(+)CX(3)CR1(-) lamina propria DCs under the control of Flt3 and granulocyte-macrophage-colony-stimulating factor receptor (GM-CSFR) ligands. CD103(+)CX(3)CR1(-) DCs but not CD103(-)CX(3)CR1(+) DCs in the lamina propria constitutively expressed CCR7 and were the first DCs to transport pathogenic Salmonella from the intestinal tract to the mesenteric lymph nodes. Altogether, these results underline the diverse origin of the lamina propria DC network and identify mucosal DCs that arise from pre-DCs as key sentinels of the gut immune system.
                Bookmark

                Author and article information

                Contributors
                Journal
                Cell Immunol
                Cell. Immunol
                Cellular Immunology
                Elsevier
                0008-8749
                1090-2163
                1 August 2018
                August 2018
                : 330
                : 142-150
                Affiliations
                [a ]Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), Intestinal Neuro-immune Interactions, University of Leuven, Leuven, Belgium
                [b ]Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), Laboratory for Mucosal Immunology, University of Leuven, Leuven, Belgium
                Author notes
                [* ]Corresponding author at: Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Herestraat 49, Box 701, 3000 Leuven, Belgium. guy.boeckxstaens@ 123456kuleuven.be
                Article
                S0008-8749(17)30236-8
                10.1016/j.cellimm.2017.12.009
                6108422
                29291892
                fdb05fc1-c29c-4819-8e5f-5cd87757c24d
                © 2017 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 15 October 2017
                : 21 December 2017
                : 21 December 2017
                Categories
                Article

                Immunology
                mφ, macrophage,lpmφ, lamina propria macrophage,mmφ, muscularis macrophage,ens, enteric nervous system,dcs, dendritic cells,β2-ar, ß2-adrenergic receptors,poi, postoperative ileus,α7nachr, α7 nicotinic receptor,cns, central nervous system,i/r, ischemia-reperfusion,icc, interstitial cells of cajal,vns, vagus nerve stimulation,caip, cholinergic anti-inflammatory pathway,intestinal muscularis externa,intestinal macrophage,enteric nervous system,neuro-immune interactions,gastrointestinal disorders,tissue-macrophage ontogeny

                Comments

                Comment on this article