27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sun-Dried Raisins are a Cost-Effective Alternative to Sports Jelly Beans in Prolonged Cycling

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The purpose of this study was to examine the effects of a natural carbohydrate (CHO) source in the form of sun-dried raisins (SDRs) vs. Sports Jelly Beans™ (SJBs) on endurance performance in trained cyclists and triathletes. Ten healthy men (18-33 years) completed 1 water-only acclimatization exercise trial and 2 randomized exercise trials administered in a crossover fashion. Each trial consisted of a 120-minute constant-intensity glycogen depletion period followed by a 10-km time trial (TT). During each experimental trial, participants consumed isocaloric amounts of SDRs or SJBs in 20-minute intervals. Measurements included time to complete 10-km TT, power output during 10-km TT, blood glucose levels and respiratory exchange ratio during glycogen depletion period, rate of perceived exertion (RPE), 'flow' questionnaire responses, and a hedonic (i.e., pleasantness) sensory acceptance test. There were no significant differences in endurance performance for TT time (SDRs vs. SJBs, 17.3 ± 0.4 vs. 17.3 ± 0.4 seconds) or power (229.3 ± 13.0 vs. 232.0 ± 13.6 W), resting blood glucose levels (5.8 ± 04 mmol·L(-1) for SDRs and 5.4 ± 0.2 mmol·L(-1) for SJBs), RPE, or flow experiences between SDR and SJB trials. However, the mean sensory acceptance scores were significantly higher for the SDRs compared to the SJBs (50.7 ± 1.7 vs. 44.3 ± 2.7). Consuming SDRs or SJBs during 120 minutes of intense cycling results in similar subsequent TT performances and are equally effective in maintaining blood glucose levels during exercise. Therefore, SDRs are a natural, pleasant, cost-effective CHO alternative to commercial SJBs that can be used during moderate- to high-intensity endurance exercise.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Calculation of substrate oxidation rates in vivo from gaseous exchange

          K. Frayn (1983)
          This paper reviews the assumptions involved in calculating rates of carbohydrate and fat oxidation from measurements of O2 consumption, CO2 production, and urinary nitrogen excretion. It is shown that erroneous results are obtained in the presence of metabolic processes such as lipogenesis and gluconeogenesis. The apparent rates calculated under these conditions can, however, be interpreted as net rates of “utilization.” Thus the apparent rate of carbohydrate oxidation is the sum of the rates of utilization for oxidation and for lipogenesis minus the rate at which carbohydrate is formed from amino acids. The apparent rate of fat oxidation is the difference between the rates of oxidation and synthesis from carbohydrate, so that the apparently negative rates encountered in patients infused with glucose do quantitatively represent net rates of synthesis. Other processes such as synthesis of ketone bodies or lactate at rates greater than their utilization can also disturb the calculations, but the magnitude of the effect can be estimated from appropriate measurements. Methods of correcting the observed gaseous exchange in these circumstances are given.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Assessing Flow in Physical Activity: The Flow State Scale–2 and Dispositional Flow Scale–2

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate.

              The purpose of this study was to determine whether the postponement of fatigue in subjects fed carbohydrate during prolonged strenuous exercise is associated with a slowing of muscle glycogen depletion. Seven endurance-trained cyclists exercised at 71 +/- 1% of maximal O2 consumption (VO2max), to fatigue, while ingesting a flavored water solution (i.e., placebo) during one trial and while ingesting a glucose polymer solution (i.e., 2.0 g/kg at 20 min and 0.4 g/kg every 20 min thereafter) during another trial. Fatigue during the placebo trial occurred after 3.02 +/- 0.19 h of exercise and was preceded by a decline (P less than 0.01) in plasma glucose to 2.5 +/- 0.5 mM and by a decline in the respiratory exchange ratio (i.e., R; from 0.85 to 0.80; P less than 0.05). Glycogen within the vastus lateralis muscle declined at an average rate of 51.5 +/- 5.4 mmol glucosyl units (GU) X kg-1 X h-1 during the first 2 h of exercise and at a slower rate (P less than 0.01) of 23.0 +/- 14.3 mmol GU X kg-1 X h-1 during the third and final hour. When fed carbohydrate, which maintained plasma glucose concentration (4.2-5.2 mM), the subjects exercised for an additional hour before fatiguing (4.02 +/- 0.33 h; P less than 0.01) and maintained their initial R (i.e., 0.86) and rate of carbohydrate oxidation throughout exercise. The pattern of muscle glycogen utilization, however, was not different during the first 3 h of exercise with the placebo or the carbohydrate feedings. The additional hour of exercise performed when fed carbohydrate was accomplished with little reliance on muscle glycogen (i.e., 5 mmol GU X kg-1 X h-1; NS) and without compromising carbohydrate oxidation. We conclude that when they are fed carbohydrate, highly trained endurance athletes are capable of oxidizing carbohydrate at relatively high rates from sources other than muscle glycogen during the latter stages of prolonged strenuous exercise and that this postpones fatigue.
                Bookmark

                Author and article information

                Journal
                Journal of Strength and Conditioning Research
                Journal of Strength and Conditioning Research
                Ovid Technologies (Wolters Kluwer Health)
                1064-8011
                2011
                November 2011
                : 25
                : 11
                : 3150-3156
                Article
                10.1519/JSC.0b013e31820f5089
                7081390
                21881533
                fdb55d1e-d36f-4d1f-bd94-0724e4e373d4
                © 2011
                History

                Comments

                Comment on this article