194
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Central sensitization: implications for the diagnosis and treatment of pain.

      1
      Pain
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nociceptor inputs can trigger a prolonged but reversible increase in the excitability and synaptic efficacy of neurons in central nociceptive pathways, the phenomenon of central sensitization. Central sensitization manifests as pain hypersensitivity, particularly dynamic tactile allodynia, secondary punctate or pressure hyperalgesia, aftersensations, and enhanced temporal summation. It can be readily and rapidly elicited in human volunteers by diverse experimental noxious conditioning stimuli to skin, muscles or viscera, and in addition to producing pain hypersensitivity, results in secondary changes in brain activity that can be detected by electrophysiological or imaging techniques. Studies in clinical cohorts reveal changes in pain sensitivity that have been interpreted as revealing an important contribution of central sensitization to the pain phenotype in patients with fibromyalgia, osteoarthritis, musculoskeletal disorders with generalized pain hypersensitivity, headache, temporomandibular joint disorders, dental pain, neuropathic pain, visceral pain hypersensitivity disorders and post-surgical pain. The comorbidity of those pain hypersensitivity syndromes that present in the absence of inflammation or a neural lesion, their similar pattern of clinical presentation and response to centrally acting analgesics, may reflect a commonality of central sensitization to their pathophysiology. An important question that still needs to be determined is whether there are individuals with a higher inherited propensity for developing central sensitization than others, and if so, whether this conveys an increased risk in both developing conditions with pain hypersensitivity, and their chronification. Diagnostic criteria to establish the presence of central sensitization in patients will greatly assist the phenotyping of patients for choosing treatments that produce analgesia by normalizing hyperexcitable central neural activity. We have certainly come a long way since the first discovery of activity-dependent synaptic plasticity in the spinal cord and the revelation that it occurs and produces pain hypersensitivity in patients. Nevertheless, discovering the genetic and environmental contributors to and objective biomarkers of central sensitization will be highly beneficial, as will additional treatment options to prevent or reduce this prevalent and promiscuous form of pain plasticity.

          Related collections

          Most cited references199

          • Record: found
          • Abstract: found
          • Article: not found

          Neuronal plasticity: increasing the gain in pain.

          We describe those sensations that are unpleasant, intense, or distressing as painful. Pain is not homogeneous, however, and comprises three categories: physiological, inflammatory, and neuropathic pain. Multiple mechanisms contribute, each of which is subject to or an expression of neural plasticity-the capacity of neurons to change their function, chemical profile, or structure. Here, we develop a conceptual framework for the contribution of plasticity in primary sensory and dorsal horn neurons to the pathogenesis of pain, identifying distinct forms of plasticity, which we term activation, modulation, and modification, that by increasing gain, elicit pain hypersensitivity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sensitization in patients with painful knee osteoarthritis.

            Pain is the dominant symptom in osteoarthritis (OA) and sensitization may contribute to the pain severity. This study investigated the role of sensitization in patients with painful knee OA by measuring (1) pressure pain thresholds (PPTs); (2) spreading sensitization; (3) temporal summation to repeated pressure pain stimulation; (4) pain responses after intramuscular hypertonic saline; and (5) pressure pain modulation by heterotopic descending noxious inhibitory control (DNIC). Forty-eight patients with different degrees of knee OA and twenty-four age- and sex-matched control subjects participated. The patients were separated into strong/severe (VAS>or=6) and mild/moderate pain (VAS<6) groups. PPTs were measured from the peripatellar region, tibialis anterior (TA) and extensor carpi radialis longus muscles before, during and after DNIC. Temporal summation to pressure was measured at the most painful site in the peripatellar region and over TA. Patients with severely painful OA pain have significantly lower PPT than controls. For all locations (knee, leg, and arm) significantly negative correlations between VAS and PPT were found (more pain, more sensitization). OA patients showed a significant facilitation of temporal summation from both the knee and TA and had significantly less DNIC as compared with controls. No correlations were found between standard radiological findings and clinical/experimental pain parameters. However, patients with lesions in the lateral tibiofemoral knee compartment had higher pain ratings compared with those with intercondylar and medial lesions. This study highlights the importance of central sensitization as an important manifestation in knee OA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Central sensitization and LTP: do pain and memory share similar mechanisms?

              Synaptic plasticity is fundamental to many neurobiological functions, including memory and pain. Central sensitization refers to the increased synaptic efficacy established in somatosensory neurons in the dorsal horn of the spinal cord following intense peripheral noxious stimuli, tissue injury or nerve damage. This heightened synaptic transmission leads to a reduction in pain threshold, an amplification of pain responses and a spread of pain sensitivity to non-injured areas. In the cortex, LTP - a long-lasting highly localized increase in synaptic strength - is a synaptic substrate for memory and learning. Analysis of the molecular mechanisms underlying the generation and maintenance of central sensitization and LTP indicates that, although there are differences between the synaptic plasticity contributing to memory and pain, there are also striking similarities.
                Bookmark

                Author and article information

                Journal
                Pain
                Pain
                Elsevier BV
                1872-6623
                0304-3959
                Mar 2011
                : 152
                : 3 Suppl
                Affiliations
                [1 ] Program in Neurobiology and FM Kirby Neurobiology Center, Children's Hospital Boston, Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
                Article
                00006396-201103001-00002 NIHMS249521
                10.1016/j.pain.2010.09.030
                3268359
                20961685
                fdbb945e-7120-4dd6-91d2-63a05435dca1
                Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
                History

                Comments

                Comment on this article