34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cell membrane electropermeabilization with arbitrary pulse waveforms

      , , ,
      IEEE Engineering in Medicine and Biology Magazine
      Institute of Electrical and Electronics Engineers (IEEE)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Electroporation of cell membranes.

          T.Y. Tsong (1991)
          Electric pulses of intensity in kilovolts per centimeter and of duration in microseconds to milliseconds cause a temporary loss of the semipermeability of cell membranes, thus leading to ion leakage, escape of metabolites, and increased uptake by cells of drugs, molecular probes, and DNA. A generally accepted term describing this phenomenon is "electroporation." Other effects of a high-intensity electric field on cell membranes include membrane fusions, bleb formation, cell lysis... etc. Electroporation and its related phenomena reflect the basic bioelectrochemistry of cell membranes and are thus important for the study of membrane structure and function. These phenomena also occur in such events as electric injury, electrocution, and cardiac procedures involving electric shocks. Electroporation has found applications in: (a) introduction of plasmids or foreign DNA into living cells for gene transfections, (b) fusion of cells to prepare heterokaryons, hybridoma, hybrid embryos... etc., (c) insertion of proteins into cell membranes, (d) improving drug delivery and hence effectiveness in chemotherapy of cancerous cells, (e) constructing animal model by fusing human cells with animal tissues, (f) activation of membrane transporters and enzymes, and (g) alteration of genetic expression in living cells. A brief review of mechanistic studies of electroporation is given.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effective treatment of cutaneous and subcutaneous malignant tumours by electrochemotherapy.

            Electrochemotherapy (ECT) enhances the effectiveness of chemotherapeutic agents by administering the drug in combination with short intense electric pulses. ECT is effective because electric pulses permeabilize tumour cell membranes and allow non-permeant drugs, such as bleomycin, to enter the cells. The aim of this study was to demonstrate the anti-tumour effectiveness of ECT with bleomycin on cutaneous and subcutaneous tumours. This article summarizes results obtained in independent clinical trials performed by five cancer centres. A total of 291 cutaneous or subcutaneous tumours of basal cell carcinoma (32), malignant melanoma (142), adenocarcinoma (30) and head and neck squamous cell carcinoma (87) were treated in 50 patients. Short and intense electric pulses were applied to tumours percutaneously after intravenous or intratumour administration of bleomycin. The tumours were measured and the response to the treatment evaluated 30 days after the treatment. Objective responses were obtained in 233 (85.3%) of the 273 evaluable tumours that were treated with ECT. Clinical complete responses were achieved in 154 (56.4%) tumours, and partial responses were observed in 79 (28.9%) tumours. The application of electric pulses to the patients was safe and well tolerated. An instantaneous contraction of the underlying muscles was noticed. Minimal adverse side-effects were observed. ECT was shown to be an effective local treatment. ECT was effective regardless of the histological type of the tumour. Therefore, ECT offers an approach to the treatment of cutaneous and subcutaneous tumours in patients with minimal adverse side-effects and with a high response rate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vivo electrically mediated protein and gene transfer in murine melanoma.

              We show that efficient permeabilization of murine melanoma can be obtained in vivo by applying electric pulses. More than 80% of the cell population is affected as shown by the penetration of propidium iodide. A protein, beta-galactosidase, can be transferred and expressed into the cells by incorporating either the protein or a plasmid carrying the reporter gene with respective efficiencies of 20% and 4%. This is obtained by a direct injection of either the protein or the plasmid in the tumor, followed by the application of electric pulses with surface electrodes in contact with the skin. This approach is simple and safe to use, reproducible, and specific; moreover, it is potentially applicable to a wide variety of tissues, cell types, and animals.
                Bookmark

                Author and article information

                Journal
                IEEE Engineering in Medicine and Biology Magazine
                IEEE Eng. Med. Biol. Mag.
                Institute of Electrical and Electronics Engineers (IEEE)
                0739-5175
                January 2003
                January 2003
                : 22
                : 1
                : 77-81
                Article
                10.1109/MEMB.2003.1191453
                fdbe88a6-4dff-45bf-b4a5-f0aa103bbbed
                © 2003
                History

                Comments

                Comment on this article