45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sphingolipid Metabolism: A New Therapeutic Opportunity for Brain Degenerative Disorders

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neurodegenerative diseases represent a class of fatal brain disorders for which the number of effective therapeutic options remains limited with only symptomatic treatment accessible. Multiple studies show that defects in sphingolipid pathways are shared among different brain disorders including neurodegenerative diseases and may contribute to their complex pathogenesis. In this mini review, we discuss the hypothesis that modulation of sphingolipid metabolism and their related signaling pathways may represent a potential therapeutic approach for those devastating conditions. The plausible “druggability” of sphingolipid pathways is greatly promising and represent a relevant feature that brings real advantage to the development of new therapeutic options for these conditions. Indeed, several molecules that selectively target sphingolipds are already available and many of them currently in clinical trial for human diseases. A deeper understanding of the “sphingolipid scenario” in neurodegenerative disorders would certainly enhance therapeutic perspectives for these conditions, by taking advantage from the already available molecules and by promoting the development of new ones.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: not found

          Alzheimer's disease.

          Alzheimer's disease is the most common cause of dementia. Research advances have enabled detailed understanding of the molecular pathogenesis of the hallmarks of the disease--ie, plaques, composed of amyloid beta (Abeta), and tangles, composed of hyperphosphorylated tau. However, as our knowledge increases so does our appreciation for the pathogenic complexity of the disorder. Familial Alzheimer's disease is a very rare autosomal dominant disease with early onset, caused by mutations in the amyloid precursor protein and presenilin genes, both linked to Abeta metabolism. By contrast with familial disease, sporadic Alzheimer's disease is very common with more than 15 million people affected worldwide. The cause of the sporadic form of the disease is unknown, probably because the disease is heterogeneous, caused by ageing in concert with a complex interaction of both genetic and environmental risk factors. This seminar reviews the key aspects of the disease, including epidemiology, genetics, pathogenesis, diagnosis, and treatment, as well as recent developments and controversies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A review on Alzheimer's disease pathophysiology and its management: an update.

            Alzheimer's disease acknowledged as progressive multifarious neurodegenerative disorder, is the leading cause of dementia in late adult life. Pathologically it is characterized by intracellular neurofibrillary tangles and extracellular amyloidal protein deposits contributing to senile plaques. Over the last two decades, advances in the field of pathogenesis have inspired the researchers for the investigation of novel pharmacological therapeutics centered more towards the pathophysiological events of the disease. Currently available treatments i.e. acetylcholinesterase inhibitors (rivastigmine, galantamine, donepezil) and N-methyl d-aspartate receptor antagonist (memantine) contribute minimal impact on the disease and target late aspects of the disease. These drugs decelerate the progression of the disease, provide symptomatic relief but fail to achieve a definite cure. While the neuropathological features of Alzheimer's disease are recognized but the intricacies of the mechanism have not been clearly defined. This lack of understanding regarding the pathogenic process may be the likely reason for the non-availability of effective treatment which can prevent onset and progression of the disease. Owing to the important progress in the field of pathophysiology in the last couple of years, new therapeutic targets are available that should render the underlying disease process to be tackled directly. In this review, authors will discusses the different aspects of pathophysiological mechanisms behind Alzheimer's disease and its management through conventional drug therapy, including modern investigational therapeutic strategies, recently completed and ongoing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sphingosine-1-phosphate signaling and its role in disease.

              The bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P) is now recognized as a critical regulator of many physiological and pathophysiological processes, including cancer, atherosclerosis, diabetes and osteoporosis. S1P is produced in cells by two sphingosine kinase isoenzymes, SphK1 and SphK2. Many cells secrete S1P, which can then act in an autocrine or paracrine manner. Most of the known actions of S1P are mediated by a family of five specific G protein-coupled receptors. More recently, it was shown that S1P also has important intracellular targets involved in inflammation, cancer and Alzheimer's disease. This suggests that S1P actions are much more complex than previously thought, with important ramifications for development of therapeutics. This review highlights recent advances in our understanding of the mechanisms of action of S1P and its roles in disease. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                17 April 2018
                2018
                : 12
                : 249
                Affiliations
                IRCCS Neuromed , Pozzilli, Italy
                Author notes

                Edited by: Gian Carlo Bellenchi, Institute of Genetics and Biophysics (CNR), Italy

                Reviewed by: Nataliya G. Kolosova, Institute of Cytology and Genetics (RAS), Russia; Riccardo Ghidoni, Università degli Studi di Milano, Italy

                *Correspondence: Vittorio Maglione vittorio.maglione@ 123456neuromed.it

                This article was submitted to Neurodegeneration, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2018.00249
                5913346
                29719499
                fdc0c8bb-1433-4932-a7dc-e55075575901
                Copyright © 2018 Di Pardo and Maglione.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 October 2017
                : 29 March 2018
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 105, Pages: 8, Words: 6870
                Categories
                Neuroscience
                Mini Review

                Neurosciences
                neurodegenerative diseases,sphingolipid metabolism,s1p,ceramide,fty720,s1prs
                Neurosciences
                neurodegenerative diseases, sphingolipid metabolism, s1p, ceramide, fty720, s1prs

                Comments

                Comment on this article