28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantum Cosmology of \(f(R,T)\) gravity

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Modified gravity theories have the potential of explaining the recent acceleration of the Universe without resorting to the mysterious concept of dark energy. In particular, it has been pointed out that matter-geometry coupling may be responsible for the recent cosmological dynamics of the Universe, and matter itself may play a more fundamental role in the description of the gravitational processes that usually assumed. We study the quantum cosmology of the \(f(R,T)\) gravity theory, in which the effective Lagrangian of the gravitational field is given by an arbitrary function of the Ricci scalar, and the trace of the matter energy-momentum tensor, respectively. For the background geometry we adopt the Friedmann--Robertson--Walker metric, and we assume that matter content of the Universe consists of a perfect fluid. We obtain the general form of the gravitational Hamiltonian, of the quantum potential, and of the canonical momenta, respectively. This allows us to formulate the full Wheeler-de Witt equation describing the quantum properties of this modified gravity model. As a specific application we consider in detail the quantum cosmology of the \(f(R,T)=F^0(R)+\theta RT\) model, in which \(F^0(R)\) is an arbitrary function of the Ricci scalar, and \(\theta \) is a function of the scale factor only. The Hamiltonian form of the equations of motion, and the Wheeler-de Witt equations are obtained, and a time parameter for the corresponding dynamical system is identified, which allows to formulate the Schr\"{o}dinger--Wheeler--de Witt equation for the quantum-mechanical description of the model under consideration. A perturbative approach for the study of this equation is developed, and the energy levels of the Universe are obtained by using a twofold degenerate perturbation approach. A second quantization approach for the description of quantum time is also proposed, and briefly discussed.

          Related collections

          Most cited references3

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Observational Probes of Cosmic Acceleration

          The accelerating expansion of the universe is the most surprising cosmological discovery in many decades, implying that the universe is dominated by some form of "dark energy" with exotic physical properties, or that Einstein's theory of gravity breaks down on cosmological scales. The profound implications of cosmic acceleration have inspired ambitious experimental efforts to measure the history of expansion and growth of structure with percent-level precision or higher. We review in detail the four most well established methods for making such measurements: Type Ia supernovae, baryon acoustic oscillations (BAO), weak gravitational lensing, and galaxy clusters. We pay particular attention to the systematic uncertainties in these techniques and to strategies for controlling them at the level needed to exploit "Stage IV" dark energy facilities such as BigBOSS, LSST, Euclid, and WFIRST. We briefly review a number of other approaches including redshift-space distortions, the Alcock-Paczynski test, and direct measurements of H_0. We present extensive forecasts for constraints on the dark energy equation of state and parameterized deviations from GR, achievable with Stage III and Stage IV experimental programs that incorporate supernovae, BAO, weak lensing, and CMB data. We also show the level of precision required for other methods to provide constraints competitive with those of these fiducial programs. We emphasize the value of a balanced program that employs several of the most powerful methods in combination, both to cross-check systematic uncertainties and to take advantage of complementary information. Surveys to probe cosmic acceleration produce data sets with broad applications, and they continue the longstanding astronomical tradition of mapping the universe in ever greater detail over ever larger scales.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Dark Matter and Background Light

            Progress in observational cosmology over the past five years has established that the Universe is dominated dynamically by dark matter and dark energy. Both these new and apparently independent forms of matter-energy have properties that are inconsistent with anything in the existing standard model of particle physics, and it appears that the latter must be extended. We review what is known about dark matter and energy from their impact on the light of the night sky. Most of the candidates that have been proposed so far are not perfectly black, but decay into or otherwise interact with photons in characteristic ways that can be accurately modelled and compared with observational data. We show how experimental limits on the intensity of cosmic background radiation in the microwave, infrared, optical, ultraviolet, x-ray and gamma-ray bands put strong limits on decaying vacuum energy, light axions, neutrinos, unstable weakly-interacting massive particles (WIMPs) and objects like black holes. Our conclusion is that the dark matter is most likely to be WIMPs if conventional cosmology holds; or higher-dimensional sources if spacetime needs to be extended.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Classical and quantum dynamics of a perfect fluid scalar-metric cosmology

              We study the classical and quantum models of a Friedmann-Robertson-Walker (FRW) cosmology, coupled to a perfect fluid, in the context of the scalar-metric gravity. Using the Schutz' representation for the perfect fluid, we show that, under a particular gauge choice, it may lead to the identification of a time parameter for the corresponding dynamical system. It is shown that the evolution of the universe based on the classical cosmology represents a late time power law expansion coming from a big-bang singularity in which the scale factor goes to zero while the scalar field blows up. Moreover, this formalism gives rise to a Schr\"{o}dinger-Wheeler-DeWitt (SWD) equation for the quantum-mechanical description of the model under consideration, the eigenfunctions of which can be used to construct the wave function of the universe. We use the resulting wave function in order to investigate the possibility of the avoidance of classical singularities due to quantum effects by means of the many-worlds and ontological interpretation of quantum cosmology.
                Bookmark

                Author and article information

                Journal
                2016-07-30
                Article
                10.1140/epjc/s10052-016-4303-6
                1608.00113
                fdc3fb80-c0cb-4fd3-906d-82279fd2c749

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                The European Physical Journal C, 76(8), 1-19 (2016)
                20 pages, no figures, accepted for publication in EPJC
                gr-qc astro-ph.CO hep-th

                Cosmology & Extragalactic astrophysics,General relativity & Quantum cosmology,High energy & Particle physics

                Comments

                Comment on this article