177
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana

      , , , , , , ,
      The Plant Journal
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Raffinose family oligosaccharides (RFO) accumulating during seed development are thought to play a role in the desiccation tolerance of seeds. However, the functions of RFO in desiccation tolerance have not been elucidated. Here we examine the functions of RFO in Arabidopsis thaliana plants under drought- and cold-stress conditions, based on the analyses of function and expression of genes involved in RFO biosynthesis. Sugar analysis showed that drought-, high salinity- and cold-treated Arabidopsis plants accumulate a large amount of raffinose and galactinol, but not stachyose. Raffinose and galactinol were not detected in unstressed plants. This suggests that raffinose and galactinol are involved in tolerance to drought, high salinity and cold stresses. Galactinol synthase (GolS) catalyses the first step in the biosynthesis of RFO from UDP-galactose. We identified three stress-responsive GolS genes (AtGolS1, 2 and 3) among seven Arabidopsis GolS genes. AtGolS1 and 2 were induced by drought and high-salinity stresses, but not by cold stress. By contrast, AtGolS3 was induced by cold stress but not by drought or salt stress. All the GST fusion proteins of GST-AtGolS1, 2 and 3 expressed in Escherichia coli had galactinol synthase activities. Overexpression of AtGolS2 in transgenic Arabidopsis caused an increase in endogenous galactinol and raffinose, and showed reduced transpiration from leaves to improve drought tolerance. These results show that stress-inducible galactinol synthase plays a key role in the accumulation of galactinol and raffinose under abiotic stress conditions, and that galactinol and raffinose may function as osmoprotectants in drought-stress tolerance of plants.

          Related collections

          Most cited references1

          • Record: found
          • Abstract: found
          • Article: not found

          Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection.

          Culture conditions were developed that induce Arabidopsis thaliana (L.) Heynh. root cuttings to regenerate shoots rapidly and at 100% efficiency. The shoots produce viable seeds in vitro or after rooting in soil. A transformation procedure for Arabidopsis root explants based on kanamycin selection was established. By using this regeneration procedure and an Agrobacterium tumor-inducing Ti plasmid carrying a chimeric neomycin phosphotransferase II gene (neo), transformed seed-producing plants were obtained with an efficiency between 20% and 80% within 3 months after gene transfer. F(1) seedlings of these transformants showed Mendelian segregation of the kanamycin-resistance trait. The transformation method could be applied to three different Arabidopsis ecotypes. In addition to the neo gene, a chimeric bar gene conferring resistance to the herbicide Basta was introduced into Arabidopsis. The expression of the bar gene was shown by enzymatic assay.

            Author and article information

            Journal
            The Plant Journal
            Plant J
            Wiley
            0960-7412
            1365-313X
            February 2002
            February 2002
            : 29
            : 4
            : 417-426
            Article
            10.1046/j.0960-7412.2001.01227.x
            11846875
            fdd1daaa-eef0-4061-898f-feff09c4457b
            © 2002

            http://doi.wiley.com/10.1002/tdm_license_1.1

            History

            Comments

            Comment on this article

            Related Documents Log