23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microneedles: quick and easy delivery methods of vaccines

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vaccination is the most efficient method for infectious disease prevention. Parenteral injections such as intramuscular, intradermal, and subcutaneous injections have several advantages in vaccine delivery, but there are many drawbacks. Thus, the development of a new vaccine delivery system has long been required. Recently, microneedles have been attracting attention as new vaccination tools. Microneedle is a highly effective transdermal vaccine delivery method due to its mechanism of action, painlessness, and ease of use. Here, we summarized the characteristics of microneedles and the possibilities as a new vaccine delivery route.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Transdermal drug delivery.

          Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, noncavitational ultrasound and iontophoresis have also resulted in clinical products; the ability of iontophoresis to control delivery rates in real time provides added functionality. Third-generation delivery systems target their effects to skin's barrier layer of stratum corneum using microneedles, thermal ablation, microdermabrasion, electroporation and cavitational ultrasound. Microneedles and thermal ablation are currently progressing through clinical trials for delivery of macromolecules and vaccines, such as insulin, parathyroid hormone and influenza vaccine. Using these novel second- and third-generation enhancement strategies, transdermal delivery is poised to significantly increase its impact on medicine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microneedles for drug and vaccine delivery.

            Microneedles were first conceptualized for drug delivery many decades ago, but only became the subject of significant research starting in the mid-1990's when microfabrication technology enabled their manufacture as (i) solid microneedles for skin pretreatment to increase skin permeability, (ii) microneedles coated with drug that dissolves off in the skin, (iii) polymer microneedles that encapsulate drug and fully dissolve in the skin and (iv) hollow microneedles for drug infusion into the skin. As shown in more than 350 papers now published in the field, microneedles have been used to deliver a broad range of different low molecular weight drugs, biotherapeutics and vaccines, including published human studies with a number of small-molecule and protein drugs and vaccines. Influenza vaccination using a hollow microneedle is in widespread clinical use and a number of solid microneedle products are sold for cosmetic purposes. In addition to applications in the skin, microneedles have also been adapted for delivery of bioactives into the eye and into cells. Successful application of microneedles depends on device function that facilitates microneedle insertion and possible infusion into skin, skin recovery after microneedle removal, and drug stability during manufacturing, storage and delivery, and on patient outcomes, including lack of pain, skin irritation and skin infection, in addition to drug efficacy and safety. Building off a strong technology base and multiple demonstrations of successful drug delivery, microneedles are poised to advance further into clinical practice to enable better pharmaceutical therapies, vaccination and other applications. Copyright © 2012 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Current status and future potential of transdermal drug delivery.

              The past twenty five years have seen an explosion in the creation and discovery of new medicinal agents. Related innovations in drug delivery systems have not only enabled the successful implementation of many of these novel pharmaceuticals, but have also permitted the development of new medical treatments with existing drugs. The creation of transdermal delivery systems has been one of the most important of these innovations, offering a number of advantages over the oral route. In this article, we discuss the already significant impact this field has made on the administration of various pharmaceuticals; explore limitations of the current technology; and discuss methods under exploration for overcoming these limitations and the challenges ahead.
                Bookmark

                Author and article information

                Journal
                Clin Exp Vaccine Res
                Clin Exp Vaccine Res
                CEVR
                Clinical and Experimental Vaccine Research
                The Korean Vaccine Society
                2287-3651
                2287-366X
                July 2017
                26 July 2017
                : 6
                : 2
                : 156-159
                Affiliations
                Interpark Bio-Convergence Center, Seoul, Korea.
                Author notes
                Corresponding author: Joo Young Kim, PhD. Interpark Bio-Convergence Center, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea. Tel: +82-2-6320-3321, Fax: +82-2-6320-3390, jooyoung.kim@ 123456imarketkorea.com
                Author information
                https://orcid.org/0000-0002-9904-1771
                https://orcid.org/0000-0003-0658-269X
                https://orcid.org/0000-0002-8567-8309
                https://orcid.org/0000-0002-3078-9810
                https://orcid.org/0000-0003-2437-1845
                https://orcid.org/0000-0002-1572-9182
                https://orcid.org/0000-0003-2054-7014
                https://orcid.org/0000-0003-4846-6259
                Article
                10.7774/cevr.2017.6.2.156
                5540964
                28775980
                fdd52fdb-1b66-45a0-9e90-e415d5d6cdd6
                © Korean Vaccine Society.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 May 2017
                : 12 June 2017
                : 10 July 2017
                Categories
                Brief Communication

                microneedles,vaccines,transdermal drug delivery system,needle-free vaccination

                Comments

                Comment on this article