65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Healthcare As a Service (HAAS): CNN-based cloud computing model for ubiquitous access to lung cancer diagnosis ☆☆

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The field of automated lung cancer diagnosis using Computed Tomography (CT) scans has been significantly advanced by the precise predictions offered by Convolutional Neural Network (CNN)-based classifiers. Critical areas of study include improving image quality, optimizing learning algorithms, and enhancing diagnostic accuracy. To facilitate a seamless transition from research laboratories to real-world applications, it is crucial to improve the technology's usability—a factor often neglected in current state-of-the-art research. Yet, current state-of-the-art research in this field frequently overlooks the need for expediting this process. This paper introduces Healthcare-As-A-Service (HAAS), an innovative concept inspired by Software-As-A-Service (SAAS) within the cloud computing paradigm. As a comprehensive lung cancer diagnosis service system, HAAS has the potential to reduce lung cancer mortality rates by providing early diagnosis opportunities to everyone. We present HAASNet, a cloud-compatible CNN that boasts an accuracy rate of 96.07%. By integrating HAASNet predictions with physio-symptomatic data from the Internet of Medical Things (IoMT), the proposed HAAS model generates accurate and reliable lung cancer diagnosis reports. Leveraging IoMT and cloud technology, the proposed service is globally accessible via the Internet, transcending geographic boundaries. This groundbreaking lung cancer diagnosis service achieves average precision, recall, and F1-scores of 96.47%, 95.39%, and 94.81%, respectively.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A survey on Image Data Augmentation for Deep Learning

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository.

            The National Institutes of Health have placed significant emphasis on sharing of research data to support secondary research. Investigators have been encouraged to publish their clinical and imaging data as part of fulfilling their grant obligations. Realizing it was not sufficient to merely ask investigators to publish their collection of imaging and clinical data, the National Cancer Institute (NCI) created the open source National Biomedical Image Archive software package as a mechanism for centralized hosting of cancer related imaging. NCI has contracted with Washington University in Saint Louis to create The Cancer Imaging Archive (TCIA)-an open-source, open-access information resource to support research, development, and educational initiatives utilizing advanced medical imaging of cancer. In its first year of operation, TCIA accumulated 23 collections (3.3 million images). Operating and maintaining a high-availability image archive is a complex challenge involving varied archive-specific resources and driven by the needs of both image submitters and image consumers. Quality archives of any type (traditional library, PubMed, refereed journals) require management and customer service. This paper describes the management tasks and user support model for TCIA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scans.

              The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process. Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories ("nodule > or =3 mm," "nodule or =3 mm"). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. The Database contains 7371 lesions marked "nodule" by at least one radiologist. 2669 of these lesions were marked "nodule > or =3 mm" by at least one radiologist, of which 928 (34.7%) received such marks from all four radiologists. These 2669 lesions include nodule outlines and subjective nodule characteristic ratings. The LIDC/IDRI Database is expected to provide an essential medical imaging research resource to spur CAD development, validation, and dissemination in clinical practice.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                27 October 2023
                November 2023
                27 October 2023
                : 9
                : 11
                : e21520
                Affiliations
                [a ]Institute of Information Technology (IIT), Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
                [b ]Department of Software Engineering, Daffodil International University, Daffodil Smart City, Birulia, Dhaka, 1216, Bangladesh
                [c ]Department of Information Technology, Faculty of Computing & Information Technology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
                Author notes
                [* ]Corresponding author.
                Article
                S2405-8440(23)08728-5 e21520
                10.1016/j.heliyon.2023.e21520
                10628703
                37942151
                fde63fff-6bf9-454f-b72f-dfb3425e687c
                © 2023 The Author(s)

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 27 May 2023
                : 27 September 2023
                : 23 October 2023
                Categories
                Research Article

                lung cancer classification,convolutional neural network,computer tomography images,internet of medical things,cloud computing,optimization algorithms,cnn,iomt,ct

                Comments

                Comment on this article