7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Hearing sensitivity is more relevant to acoustic conspicuousness than to mechanical constraints in crambid moths

      ,
      Biological Journal of the Linnean Society
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation.

          Bats (Chiroptera) represent one of the largest and most diverse radiations of mammals, accounting for one-fifth of extant species. Although recent studies unambiguously support bat monophyly and consensus is rapidly emerging about evolutionary relationships among extant lineages, the fossil record of bats extends over 50 million years, and early evolution of the group remains poorly understood. Here we describe a new bat from the Early Eocene Green River Formation of Wyoming, USA, with features that are more primitive than seen in any previously known bat. The evolutionary pathways that led to flapping flight and echolocation in bats have been in dispute, and until now fossils have been of limited use in documenting transitions involved in this marked change in lifestyle. Phylogenetically informed comparisons of the new taxon with other bats and non-flying mammals reveal that critical morphological and functional changes evolved incrementally. Forelimb anatomy indicates that the new bat was capable of powered flight like other Eocene bats, but ear morphology suggests that it lacked their echolocation abilities, supporting a 'flight first' hypothesis for chiropteran evolution. The shape of the wings suggests that an undulating gliding-fluttering flight style may be primitive for bats, and the presence of a long calcar indicates that a broad tail membrane evolved early in Chiroptera, probably functioning as an additional airfoil rather than as a prey-capture device. Limb proportions and retention of claws on all digits indicate that the new bat may have been an agile climber that employed quadrupedal locomotion and under-branch hanging behaviour.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Species on the menu of a generalist predator, the eastern red bat (Lasiurus borealis): using a molecular approach to detect arthropod prey.

            One of the most difficult interactions to observe in nature is the relationship between a predator and its prey. When direct observations are impossible, we rely on morphological classification of prey remains, although this is particularly challenging among generalist predators whose faeces contain mixed and degraded prey fragments. In this investigation, we used a polymerase chain reaction and sequence-based technique to identify prey fragments in the guano of the generalist insectivore, the eastern red bat (Lasiurus borealis), and evaluate several hypotheses about prey selection and prey defences. The interaction between bats and insects is of significant evolutionary interest because of the adaptive nature of insect hearing against echolocation. However, measuring the successes of predator tactics or particular prey defences is limited because we cannot normally identify these digested prey fragments beyond order or family. Using a molecular approach, we recovered sequences from 89% of the fragments tested, and through comparison to a reference database of sequences, we were able to identify 127 different species of prey. Our results indicate that despite the robust jaws of L. borealis, most prey taxa were softer-bodied Lepidoptera. Surprisingly, more than 60% of the prey species were tympanate, with ears thought to afford protection against these echolocating bats. Moths of the family Arctiidae, which employ multiple defensive strategies, were not detected as a significant dietary component. Our results provide an unprecedented level of detail for the study of predator-prey relationships in bats and demonstrate the advantages which molecular tools can provide in investigations of complex ecological systems and food-web relationships.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The structure and function of auditory chordotonal organs in insects.

              Jayne Yack (2004)
              Insects are capable of detecting a broad range of acoustic signals transmitted through air, water, or solids. Auditory sensory organs are morphologically diverse with respect to their body location, accessory structures, and number of sensilla, but remarkably uniform in that most are innervated by chordotonal organs. Chordotonal organs are structurally complex Type I mechanoreceptors that are distributed throughout the insect body and function to detect a wide range of mechanical stimuli, from gross motor movements to air-borne sounds. At present, little is known about how chordotonal organs in general function to convert mechanical stimuli to nerve impulses, and our limited understanding of this process represents one of the major challenges to the study of insect auditory systems today. This report reviews the literature on chordotonal organs innervating insect ears, with the broad intention of uncovering some common structural specializations of peripheral auditory systems, and identifying new avenues for research. A general overview of chordotonal organ ultrastructure is presented, followed by a summary of the current theories on mechanical coupling and transduction in monodynal, mononematic, Type 1 scolopidia, which characteristically innervate insect ears. Auditory organs of different insect taxa are reviewed, focusing primarily on tympanal organs, and with some consideration to Johnston's and subgenual organs. It is widely accepted that insect hearing organs evolved from pre-existing proprioceptive chordotonal organs. In addition to certain non-neural adaptations for hearing, such as tracheal expansion and cuticular thinning, the chordotonal organs themselves may have intrinsic specializations for sound reception and transduction, and these are discussed. In the future, an integrated approach, using traditional anatomical and physiological techniques in combination with new methodologies in immunohistochemistry, genetics, and biophysics, will assist in refining hypotheses on how chordotonal organs function, and, ultimately, lead to new insights into the peripheral mechanisms underlying hearing in insects. Copyright 2004 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Journal
                Biological Journal of the Linnean Society
                Oxford University Press (OUP)
                0024-4066
                1095-8312
                May 01 2017
                May 01 2017
                January 18 2017
                May 01 2017
                May 01 2017
                January 18 2017
                : 121
                : 1
                : 174-184
                Article
                10.1093/biolinnean/blw029
                fdebfd30-3feb-45f6-b176-3f4eab84877d
                © 2017
                History

                Comments

                Comment on this article