20
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      Why publish your research Open Access with G3: Genes|Genomes|Genetics?

      Learn more and submit today!

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Accuracy of Across-Environment Genome-Wide Prediction in Maize Nested Association Mapping Populations

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Most of previous empirical studies with genome-wide prediction were focused on within-environment prediction based on a single-environment (SE) model. In this study, we evaluated accuracy improvements of across-environment prediction by using genetic and residual covariance across correlated environments. Predictions with a multienvironment (ME) model were evaluated for two corn polygenic leaf structure traits, leaf length and leaf width, based on within-population (WP) and across-population (AP) experiments using a large maize nested association mapping data set consisting of 25 populations of recombinant inbred-lines. To make our study more applicable to plant breeding, two cross-validation schemes were used by evaluating accuracies of (CV1) predicting unobserved phenotypes of untested lines and (CV2) predicting unobserved phenotypes of lines that have been evaluated in some environments but not others. We concluded that (1) genome-wide prediction provided greater prediction accuracies than traditional quantitative trait loci-based prediction in both WP and AP and provided more advantages over quantitative trait loci -based prediction for WP than for AP. (2) Prediction accuracy with ME was significantly greater than that attained by SE in CV1 and CV2, and gains with ME over SE were greater in CV2 than in CV1. These gains were also greater in WP than in AP in both CV1 and CV2. (3) Gains with ME over SE attributed to genetic correlation between environments, with little effect from residual correlation. Impacts of marker density on predictions also were investigated in this study.

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Precision mapping of quantitative trait loci.

          Adequate separation of effects of possible multiple linked quantitative trait loci (QTLs) on mapping QTLs is the key to increasing the precision of QTL mapping. A new method of QTL mapping is proposed and analyzed in this paper by combining interval mapping with multiple regression. The basis of the proposed method is an interval test in which the test statistic on a marker interval is made to be unaffected by QTLs located outside a defined interval. This is achieved by fitting other genetic markers in the statistical model as a control when performing interval mapping. Compared with the current QTL mapping method (i.e., the interval mapping method which uses a pair or two pairs of markers for mapping QTLs), this method has several advantages. (1) By confining the test to one region at a time, it reduces a multiple dimensional search problem (for multiple QTLs) to a one dimensional search problem. (2) By conditioning linked markers in the test, the sensitivity of the test statistic to the position of individual QTLs is increased, and the precision of QTL mapping can be improved. (3) By selectively and simultaneously using other markers in the analysis, the efficiency of QTL mapping can be also improved. The behavior of the test statistic under the null hypothesis and appropriate critical value of the test statistic for an overall test in a genome are discussed and analyzed. A simulation study of QTL mapping is also presented which illustrates the utility, properties, advantages and disadvantages of the method.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A simple regression method for mapping quantitative trait loci in line crosses using flanking markers.

            The use of flanking marker methods has proved to be a powerful tool for the mapping of quantitative trait loci (QTL) in the segregating generations derived from crosses between inbred lines. Methods to analyse these data, based on maximum-likelihood, have been developed and provide good estimates of QTL effects in some situations. Maximum-likelihood methods are, however, relatively complex and can be computationally slow. In this paper we develop methods for mapping QTL based on multiple regression which can be applied using any general statistical package. We use the example of mapping in an F(2) population and show that these regression methods produce very similar results to those obtained using maximum likelihood. The relative simplicity of the regression methods means that models with more than a single QTL can be explored and we give examples of two lined loci and of two interacting loci. Other models, for example with more than two QTL, with environmental fixed effects, with between family variance or for threshold traits, could be fitted in a similar way. The ease, speed of application and generality of regression methods for flanking marker analysis, and the good estimates they obtain, suggest that they should provide the method of choice for the analysis of QTL mapping data from inbred line crosses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mapping mendelian factors underlying quantitative traits using RFLP linkage maps.

              The advent of complete genetic linkage maps consisting of codominant DNA markers [typically restriction fragment length polymorphisms (RFLPs)] has stimulated interest in the systematic genetic dissection of discrete Mendelian factors underlying quantitative traits in experimental organisms. We describe here a set of analytical methods that modify and extend the classical theory for mapping such quantitative trait loci (QTLs). These include: (i) a method of identifying promising crosses for QTL mapping by exploiting a classical formula of SEWALL WRIGHT; (ii) a method (interval mapping) for exploiting the full power of RFLP linkage maps by adapting the approach of LOD score analysis used in human genetics, to obtain accurate estimates of the genetic location and phenotypic effect of QTLs; and (iii) a method (selective genotyping) that allows a substantial reduction in the number of progeny that need to be scored with the DNA markers. In addition to the exposition of the methods, explicit graphs are provided that allow experimental geneticists to estimate, in any particular case, the number of progeny required to map QTLs underlying a quantitative trait.
                Bookmark

                Author and article information

                Journal
                G3 (Bethesda)
                Genetics
                ggg
                ggg
                ggg
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                1 February 2013
                February 2013
                : 3
                : 2
                : 263-272
                Affiliations
                [* ]Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709
                []Syngenta, Inc., Clinton, Illinois 61727
                []Syngenta, Inc., Stanton, Minnesota 55018
                [§ ]Syngenta Seeds B.V., 1601 BK Enkhuizen, The Netherlands
                Author notes

                Supporting information is available online at http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.112.005066/-/DC1.

                [1 ]Corresponding author: Syngenta Biotechnology, Inc., 3054 E. Cornwallis Road, Research Triangle Park, NC 27709. E-mail: zhigang.guo@ 123456syngenta.com
                Article
                GGG_005066
                10.1534/g3.112.005066
                3564986
                23390602
                fdfbec2d-a4b5-4005-b9c7-048fe73dc9ce
                Copyright © 2013 Guo et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution Unported License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 August 2012
                : 09 December 2012
                Categories
                Investigations
                Custom metadata
                v1

                Genetics
                best linear unbiased prediction,genpred,genetic correlation,maize,ridge regression,shared data resources

                Comments

                Comment on this article