45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Individualization of Irinotecan Treatment: A Review of Pharmacokinetics, Pharmacodynamics, and Pharmacogenetics

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since its clinical introduction in 1998, the topoisomerase I inhibitor irinotecan has been widely used in the treatment of solid tumors, including colorectal, pancreatic, and lung cancer. Irinotecan therapy is characterized by several dose-limiting toxicities and large interindividual pharmacokinetic variability. Irinotecan has a highly complex metabolism, including hydrolyzation by carboxylesterases to its active metabolite SN-38, which is 100- to 1000-fold more active compared with irinotecan itself. Several phase I and II enzymes, including cytochrome P450 (CYP) 3A4 and uridine diphosphate glucuronosyltransferase (UGT) 1A, are involved in the formation of inactive metabolites, making its metabolism prone to environmental and genetic influences. Genetic variants in the DNA of these enzymes and transporters could predict a part of the drug-related toxicity and efficacy of treatment, which has been shown in retrospective and prospective trials and meta-analyses. Patient characteristics, lifestyle and comedication also influence irinotecan pharmacokinetics. Other factors, including dietary restriction, are currently being studied. Meanwhile, a more tailored approach to prevent excessive toxicity and optimize efficacy is warranted. This review provides an updated overview on today’s literature on irinotecan pharmacokinetics, pharmacodynamics, and pharmacogenetics.

          Related collections

          Most cited references266

          • Record: found
          • Abstract: found
          • Article: not found

          Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group.

          The combination of fluorouracil and leucovorin has until recently been standard therapy for metastatic colorectal cancer. Irinotecan prolongs survival in patients with colorectal cancer that is refractory to treatment with fluorouracil and leucovorin. In a multicenter trial, we compared a combination of irinotecan, fluorouracil and leucovorin with bolus doses of fluorouracil and leucovorin as first-line therapy for metastatic colorectal cancer. A third group of patients received irinotecan alone. Patients were randomly assigned to receive irinotecan (125 mg per square meter of body-surface area intravenously), fluorouracil (500 mg per square meter as an intravenous bolus), and leucovorin (20 mg per square meter as an intravenous bolus) weekly for four weeks every six weeks; fluorouracil (425 mg per square meter as an intravenous bolus) and leucovorin (20 mg per square meter as an intravenous bolus) daily for five consecutive days every four weeks; or irinotecan alone (125 mg per square meter intravenously) weekly for four weeks every six weeks. End points included progression-free survival and overall survival. Of 683 patients, 231 were assigned to receive irinotecan, fluorouracil, and leucovorin; 226 to receive fluorouracil and leucovorin; and 226 to receive irinotecan alone. In an intention-to-treat analysis, as compared with treatment with fluorouracil and leucovorin, treatment with irinotecan, fluorouracil, and leucovorin resulted in significantly longer progression-free survival (median, 7.0 vs. 4.3 months; P=0.004), a higher rate of confirmed response (39 percent vs. 21 percent, P<0.001), and longer overall survival (median, 14.8 vs. 12.6 months; P=0.04). Results for irinotecan alone were similar to those for fluorouracil and leucovorin. Grade 3 (severe) diarrhea was more common during treatment with irinotecan, fluorouracil, and leucovorin than during treatment with fluorouracil and leucovorin, but the incidence of grade 4 (life-threatening) diarrhea was similar in the two groups (<8 percent). Grade 3 or 4 mucositis, grade 4 neutropenia, and neutropenic fever were less frequent during treatment with irinotecan, fluorouracil, and leucovorin. Adding irinotecan to the regimen of fluorouracil and leucovorin did not compromise the quality of life. Weekly treatment with irinotecan plus fluorouracil and leucovorin is superior to a widely used regimen of fluorouracil and leucovorin for metastatic colorectal cancer in terms of progression-free survival and overall survival.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial.

            Irinotecan is active against colorectal cancer in patients whose disease is refractory to fluorouracil. We investigated the efficacy of these two agents combined for first-line treatment of metastatic colorectal cancer. 387 patients previously untreated with chemotherapy (other than adjuvant) for advanced colorectal cancer were randomly assigned open-label irinotecan plus fluorouracil and calcium folinate (irinotecan group, n=199) or fluorouracil and calcium folinate alone (no-irinotecan group, n=188). Infusion schedules were once weekly or every 2 weeks, and were chosen by each centre. We assessed response rates and time to progression, and also response duration, survival, and quality of life. Analyses were done on the intention-to-treat population and on evaluable patients. The response rate was significantly higher in patients in the irinotecan group than in those in the no-irinotecan group (49 vs 31%, p<0.001 for evaluable patients, 35 vs 22%, p<0.005 by intention to treat). Time to progression was significantly longer in the irinotecan group than in the no-irinotecan group (median 6.7 vs 4.4 months, p<0.001), and overall survival was higher (median 17.4 vs 14.1 months, p=0.031). Some grade 3 and 4 toxic effects were significantly more frequent in the irinotecan group than in the no-irinotecan group, but effects were predictible, reversible, non-cumulative, and manageable. Irinotecan combined with fluorouracil and calcium folinate was well-tolerated and increased response rate, time to progression, and survival, with a later deterioration in quality of life. This combination should be considered as a reference first-line treatment for metastatic colorectal cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pharmacogenetics: from bench to byte--an update of guidelines.

              Currently, there are very few guidelines linking the results of pharmacogenetic tests to specific therapeutic recommendations. Therefore, the Royal Dutch Association for the Advancement of Pharmacy established the Pharmacogenetics Working Group with the objective of developing pharmacogenetics-based therapeutic (dose) recommendations. After systematic review of the literature, recommendations were developed for 53 drugs associated with genes coding for CYP2D6, CYP2C19, CYP2C9, thiopurine-S-methyltransferase (TPMT), dihydropyrimidine dehydrogenase (DPD), vitamin K epoxide reductase (VKORC1), uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1), HLA-B44, HLA-B*5701, CYP3A5, and factor V Leiden (FVL).
                Bookmark

                Author and article information

                Contributors
                +31 10 7042451 , s.bins@erasmusmc.nl
                Journal
                Clin Pharmacokinet
                Clin Pharmacokinet
                Clinical Pharmacokinetics
                Springer International Publishing (Cham )
                0312-5963
                1179-1926
                8 March 2018
                8 March 2018
                2018
                : 57
                : 10
                : 1229-1254
                Affiliations
                [1 ]ISNI 000000040459992X, GRID grid.5645.2, Department of Medical Oncology, , Erasmus MC Cancer Institute, ; ‘s-Gravendijkwal 230, 3015 Rotterdam, The Netherlands
                [2 ]ISNI 000000040459992X, GRID grid.5645.2, Department of Hospital Pharmacy, , Erasmus Medical Center, ; Rotterdam, The Netherlands
                [3 ]ISNI 000000040459992X, GRID grid.5645.2, Department of Clinical Chemistry, , Erasmus Medical Center, ; Rotterdam, The Netherlands
                Article
                644
                10.1007/s40262-018-0644-7
                6132501
                29520731
                fdfd6dfa-399e-478b-adcd-4c522a50dfd3
                © The Author(s) 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                Categories
                Review Article
                Custom metadata
                © Springer Nature Switzerland AG 2018

                Comments

                Comment on this article