15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Myristoylation as a target for inhibiting HIV assembly: Unsaturated fatty acids block viral budding

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Modification of HIV-1 Gag with myristic acid, a saturated 14-carbon fatty acid (14:0), is essential for HIV-1 assembly. We recently showed that exogenous treatment of cells with unsaturated 14-carbon fatty acids, 5-cis-tetradecenoic acid (14:1n-9) and 5-cis,8-cis-tetradecadienoic acid (14:2n-6), reduces the affinity of some myristoylated proteins for plasma membrane rafts, membrane subdomains that have been shown to be required for efficient assembly of HIV. Here we demonstrate that treatment of cells with 14:1n-9 and 14:2n-6 fatty acids reduced the affinity of Gag for rafts but not membranes in general. Furthermore, treatment of cells with 14-carbon unsaturated fatty acids inhibited Gag-driven particle assembly. These effects most likely reflect covalent modification of Gag with unsaturated fatty acids. Treatment with 14:1n-9 and 14:2n-6 fatty acids did not alter intracellular protein trafficking, nor did it reduce cell viability. These studies suggest a strategy to attack HIV assembly by selectively altering the patterns of fatty acid modification.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Sphingolipid–Cholesterol Rafts Diffuse as Small Entities in the Plasma Membrane of Mammalian Cells

          To probe the dynamics and size of lipid rafts in the membrane of living cells, the local diffusion of single membrane proteins was measured. A laser trap was used to confine the motion of a bead bound to a raft protein to a small area (diam ≤ 100 nm) and to measure its local diffusion by high resolution single particle tracking. Using protein constructs with identical ectodomains and different membrane regions and vice versa, we demonstrate that this method provides the viscous damping of the membrane domain in the lipid bilayer. When glycosylphosphatidylinositol (GPI) -anchored and transmembrane proteins are raft-associated, their diffusion becomes independent of the type of membrane anchor and is significantly reduced compared with that of nonraft transmembrane proteins. Cholesterol depletion accelerates the diffusion of raft-associated proteins for transmembrane raft proteins to the level of transmembrane nonraft proteins and for GPI-anchored proteins even further. Raft-associated GPI-anchored proteins were never observed to dissociate from the raft within the measurement intervals of up to 10 min. The measurements agree with lipid rafts being cholesterol-stabilized complexes of 26 ± 13 nm in size diffusing as one entity for minutes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1.

            The effects on human immunodeficiency virus type 1 virion morphogenesis and on virus replication of mutations that affect posttranslational processing of the capsid precursor protein are described. A change in the glycine residue at position two from the N terminus abolishes the myristoylation of the precursor proteins and also prevents virus particle release. Mutations in the viral protease gene abolish proteolytic cleavage of the capsid precursor but do not prevent the formation and budding of virion particles of immature appearance. Mutations that alter the sequence of the sites normally used for cleavage of the major capsid protein p24 from the capsid precursor alter virion morphogenesis and prevent virus replication.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid Cycling of Lipid Raft Markers between the Cell Surface and Golgi Complex

              The endocytic itineraries of lipid raft markers, such as glycosyl phosphatidylinositol (GPI)-anchored proteins and glycosphingolipids, are incompletely understood. Here we show that different GPI-anchored proteins have different intracellular distributions; some (such as the folate receptor) accumulate in transferrin-containing compartments, others (such as CD59 and GPI-linked green fluorescent protein [GFP]) accumulate in the Golgi apparatus. Selective photobleaching shows that the Golgi pool of both GPI-GFP and CD59-GFP constantly and rapidly exchanges with the pool of these proteins found on the plasma membrane (PM). We visualized intermediates carrying GPI-GFP from the Golgi apparatus to the PM and separate structures delivering GPI-GFP to the Golgi apparatus. GPI-GFP does not accumulate within endocytic compartments containing transferrin, although it is detected in intracellular structures which are endosomes by the criteria of accessibility to a fluid phase marker and to cholera and shiga toxin B subunits (CTxB and STxB, which are also found in rafts). GPI-GFP and a proportion of the total CTxB and STxB taken up into cells are endocytosed independently of clathrin-associated machinery and are delivered to the Golgi complex via indistinguishable mechanisms. Hence, they enter the Golgi complex in the same intermediates, get there independently of both clathrin and rab5 function, and are excluded from it at 20°C and under conditions of cholesterol sequestration. The PM–Golgi cycling pathway followed by GPI-GFP could serve to regulate lipid raft distribution and function within cells.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                October 01 2002
                September 20 2002
                October 01 2002
                : 99
                : 20
                : 13037-13042
                Article
                10.1073/pnas.212409999
                130582
                12244217
                fe19e1cc-52c4-456d-b00e-99310ba91ccf
                © 2002
                History

                Comments

                Comment on this article