71
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      T cells and reactive oxygen species

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reactive oxygen species (ROS) have been long considered simply as harmful by-products of metabolism, which damage cellular proteins, lipids, and nucleic acids. ROS are also known as a weapon of phagocytes, employed against pathogens invading the host. However, during the last decade, an understanding has emerged that ROS also have important roles as signaling messengers in a multitude of pathways, in all cells, tissues, and organs. T lymphocytes are the key players of the adaptive immune response, which both coordinate other immune cells and destroy malignant and virus-infected cells. ROS have been extensively implicated in T-cell hyporesponsiveness, apoptosis, and activation. It has also become evident that the source, the kinetics, and the localization of ROS production all influence cell responses. Thus, the characterization of the precise mechanisms by which ROS are involved in the regulation of T-cell functions is important for our understanding of the immune response and for the development of new therapeutic treatments against immune-mediated diseases. This review summarizes the 30-year-long history of research on ROS in T lymphocytes, with the emphasis on the physiological roles of ROS.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis.

          Reactive oxygen species (ROS) have been shown to be toxic but also function as signalling molecules. This biological paradox underlies mechanisms that are important for the integrity and fitness of living organisms and their ageing. The pathways that regulate ROS homeostasis are crucial for mitigating the toxicity of ROS and provide strong evidence about specificity in ROS signalling. By taking advantage of the chemistry of ROS, highly specific mechanisms have evolved that form the basis of oxidant scavenging and ROS signalling systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics.

            Super-resolution fluorescence microscopy is distinct among nanoscale imaging tools in its ability to image protein dynamics in living cells. Structured illumination microscopy (SIM) stands out in this regard because of its high speed and low illumination intensities, but typically offers only a twofold resolution gain. We extended the resolution of live-cell SIM through two approaches: ultrahigh numerical aperture SIM at 84-nanometer lateral resolution for more than 100 multicolor frames, and nonlinear SIM with patterned activation at 45- to 62-nanometer resolution for approximately 20 to 40 frames. We applied these approaches to image dynamics near the plasma membrane of spatially resolved assemblies of clathrin and caveolin, Rab5a in early endosomes, and α-actinin, often in relationship to cortical actin. In addition, we examined mitochondria, actin, and the Golgi apparatus dynamics in three dimensions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling.

              Peroxiredoxins (Prxs) are a ubiquitous family of cysteine-dependent peroxidase enzymes that play dominant roles in regulating peroxide levels within cells. These enzymes, often present at high levels and capable of rapidly clearing peroxides, display a remarkable array of variations in their oligomeric states and susceptibility to regulation by hyperoxidative inactivation and other post-translational modifications. Key conserved residues within the active site promote catalysis by stabilizing the transition state required for transferring the terminal oxygen of hydroperoxides to the active site (peroxidatic) cysteine residue. Extensive investigations continue to expand our understanding of the scope of their importance as well as the structures and forces at play within these critical defense and regulatory enzymes.
                Bookmark

                Author and article information

                Contributors
                belikov.research@gmail.com
                burkhart.schraven@med.ovgu.de
                luca.simeoni@med.ovgu.de
                Journal
                J Biomed Sci
                J. Biomed. Sci
                Journal of Biomedical Science
                BioMed Central (London )
                1021-7770
                1423-0127
                15 October 2015
                15 October 2015
                2015
                : 22
                : 85
                Affiliations
                [ ]Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
                [ ]Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120 Germany
                Author information
                http://orcid.org/0000-0002-4261-1024
                Article
                194
                10.1186/s12929-015-0194-3
                4608155
                26471060
                fe20f0c3-75bd-4d2a-bcfd-2d5afd691f4d
                © Belikov et al. 2015

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 26 July 2015
                : 6 October 2015
                Categories
                Review
                Custom metadata
                © The Author(s) 2015

                Molecular medicine
                t lymphocytes,ros,oxidative stress,hyporesponsiveness,aicd,apoptosis,activation,differentiation,signaling,tcr

                Comments

                Comment on this article