27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Essential Nutrient Interactions: Does Low or Suboptimal Magnesium Status Interact with Vitamin D and/or Calcium Status? 1 2

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although much is known about magnesium, its interactions with calcium and vitamin D are less well studied. Magnesium intake is low in populations who consume modern processed-food diets. Low magnesium intake is associated with chronic diseases of global concern [e.g., cardiovascular disease (CVD), type 2 diabetes, metabolic syndrome, and skeletal disorders], as is low vitamin D status. No simple, reliable biomarker for whole-body magnesium status is currently available, which makes clinical assessment and interpretation of human magnesium research difficult. Between 1977 and 2012, US calcium intakes increased at a rate 2–2.5 times that of magnesium intakes, resulting in a dietary calcium to magnesium intake ratio of >3.0. Calcium to magnesium ratios <1.7 and >2.8 can be detrimental, and optimal ratios may be ∼2.0. Background calcium to magnesium ratios can affect studies of either mineral alone. For example, US studies (background Ca:Mg >3.0) showed benefits of high dietary or supplemental magnesium for CVD, whereas similar Chinese studies (background Ca:Mg <1.7) showed increased risks of CVD. Oral vitamin D is widely recommended in US age-sex groups with low dietary magnesium. Magnesium is a cofactor for vitamin D biosynthesis, transport, and activation; and vitamin D and magnesium studies both showed associations with several of the same chronic diseases. Research on possible magnesium and vitamin D interactions in these human diseases is currently rare. Increasing calcium to magnesium intake ratios, coupled with calcium and vitamin D supplementation coincident with suboptimal magnesium intakes, may have unknown health implications. Interactions of low magnesium status with calcium and vitamin D, especially during supplementation, require further study.

          Related collections

          Most cited references111

          • Record: found
          • Abstract: found
          • Article: not found

          The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis.

          Altered vitamin D and calcium homeostasis may play a role in the development of type 2 diabetes mellitus (type 2 DM). EVIDENCE ACQUISITION AND ANALYSES: MEDLINE review was conducted through January 2007 for observational studies and clinical trials in adults with outcomes related to glucose homeostasis. When data were available to combine, meta-analyses were performed, and summary odds ratios (OR) are presented. Observational studies show a relatively consistent association between low vitamin D status, calcium or dairy intake, and prevalent type 2 DM or metabolic syndrome [OR (95% confidence interval): type 2 DM prevalence, 0.36 (0.16-0.80) among nonblacks for highest vs. lowest 25-hydroxyvitamin D; metabolic syndrome prevalence, 0.71 (0.57-0.89) for highest vs. lowest dairy intake]. There are also inverse associations with incident type 2 DM or metabolic syndrome [OR (95% confidence interval): type 2 DM incidence, 0.82 (0.72-0.93) for highest vs. lowest combined vitamin D and calcium intake; 0.86 (0.79-0.93) for highest vs. lowest dairy intake]. Evidence from trials with vitamin D and/or calcium supplementation suggests that combined vitamin D and calcium supplementation may have a role in the prevention of type 2 DM only in populations at high risk (i.e. glucose intolerance). The available evidence is limited because most observational studies are cross-sectional and did not adjust for important confounders, whereas intervention studies were short in duration, included few subjects, used a variety of formulations of vitamin D and calcium, or did post hoc analyses. Vitamin D and calcium insufficiency may negatively influence glycemia, whereas combined supplementation with both nutrients may be beneficial in optimizing glucose metabolism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Resurrection of vitamin D deficiency and rickets.

            The epidemic scourge of rickets in the 19th century was caused by vitamin D deficiency due to inadequate sun exposure and resulted in growth retardation, muscle weakness, skeletal deformities, hypocalcemia, tetany, and seizures. The encouragement of sensible sun exposure and the fortification of milk with vitamin D resulted in almost complete eradication of the disease. Vitamin D (where D represents D2 or D3) is biologically inert and metabolized in the liver to 25-hydroxyvitamin D [25(OH)D], the major circulating form of vitamin D that is used to determine vitamin D status. 25(OH)D is activated in the kidneys to 1,25-dihydroxyvitamin D [1,25(OH)2D], which regulates calcium, phosphorus, and bone metabolism. Vitamin D deficiency has again become an epidemic in children, and rickets has become a global health issue. In addition to vitamin D deficiency, calcium deficiency and acquired and inherited disorders of vitamin D, calcium, and phosphorus metabolism cause rickets. This review summarizes the role of vitamin D in the prevention of rickets and its importance in the overall health and welfare of infants and children.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The VITamin D and OmegA-3 TriaL (VITAL): rationale and design of a large randomized controlled trial of vitamin D and marine omega-3 fatty acid supplements for the primary prevention of cancer and cardiovascular disease.

              Data from laboratory studies, observational research, and/or secondary prevention trials suggest that vitamin D and marine omega-3 fatty acids may reduce risk for cancer or cardiovascular disease (CVD), but primary prevention trials with adequate dosing in general populations (i.e., unselected for disease risk) are lacking. The ongoing VITamin D and OmegA-3 TriaL (VITAL) is a large randomized, double-blind, placebo-controlled, 2 x 2 factorial trial of vitamin D (in the form of vitamin D(3) [cholecalciferol], 2000 IU/day) and marine omega-3 fatty acid (Omacor fish oil, eicosapentaenoic acid [EPA]+docosahexaenoic acid [DHA], 1g/day) supplements in the primary prevention of cancer and CVD among a multi-ethnic population of 20,000 U.S. men aged ≥ 50 and women aged ≥ 55. The mean treatment period will be 5 years. Baseline blood samples will be collected in at least 16,000 participants, with follow-up blood collection in about 6000 participants. Yearly follow-up questionnaires will assess treatment compliance (plasma biomarker measures will also assess compliance in a random sample of participants), use of non-study drugs or supplements, occurrence of endpoints, and cancer and vascular risk factors. Self-reported endpoints will be confirmed by medical record review by physicians blinded to treatment assignment, and deaths will be ascertained through national registries and other sources. Ancillary studies will investigate whether these agents affect risk for diabetes and glucose intolerance; hypertension; cognitive decline; depression; osteoporosis and fracture; physical disability and falls; asthma and other respiratory diseases; infections; and rheumatoid arthritis, systemic lupus erythematosus, thyroid diseases, and other autoimmune disorders. Copyright © 2011 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Adv Nutr
                Adv Nutr
                advances in nutrition
                advannut
                Advances in Nutrition
                American Society for Nutrition
                2161-8313
                2156-5376
                7 January 2016
                January 2016
                1 January 2017
                : 7
                : 1
                : 25-43
                Affiliations
                [3 ]Center for Magnesium Education and Research, Pahoa, HI;
                [4 ]Vanderbilt Epidemiology Center, Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN; and
                [5 ]Rutgers University, New Brunswick, NJ
                Author notes
                [* ]To whom correspondence should be addressed. E-mail: arosanoff@ 123456gmail.com .
                [1]

                Supported by NIH grants R01CA149633 and U01CA182364 (to QD) and AG12161 (to SAS). This is a free access article, distributed under terms ( http://www.nutrition.org/publications/guidelines-and-policies/license/) that permit unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                [2]

                Author disclosures: A Rosanoff, Q Dai, and SA Shapses, no conflicts of interest.

                Article
                008631
                10.3945/an.115.008631
                4717874
                26773013
                fe2aa47d-877c-4d01-b385-e7303c381e5b
                © 2016 American Society for Nutrition

                This is a free access article, distributed under terms ( http://www.nutrition.org/publications/guidelines-and-policies/license/) that permit unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Pages: 19
                Categories
                Reviews

                magnesium,calcium,vitamin d,calcium/magnesium ratio,nutrient interactions,essential mineral interactions

                Comments

                Comment on this article