39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Brassica juncea chitinase BjCHI1 inhibits growth of fungal phytopathogens and agglutinates Gram-negative bacteria

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Brassica juncea BjCHI1 is a plant chitinase with two chitin-binding domains. Its expression, induced in response to wounding, methyl jasmonate treatment, Aspergillus niger infection, and caterpillar Pieris rapae feeding, suggests that it plays a role in defence. In this study, to investigate the potential of using BjCHI1 in agriculture, Pichia-expressed BjCHI1 and its deletion derivatives that lack one or both chitin-binding domains were tested against phytopathogenic fungi and bacteria. Transplastomic tobacco expressing BjCHI1 was also generated and its extracts assessed. In radial growth-inhibition assays, BjCHI1 and its derivative with one chitin-binding domain showed anti-fungal activities against phytopathogens, Colletotrichum truncatum, C. acutatum, Botrytis cinerea, and Ascochyta rabiei. BjCHI1 also inhibited spore germination of C. truncatum. Furthermore, BjCHI1, but not its derivatives lacking one or both domains, inhibited the growth of Gram-negative bacteria ( Escherichia coli, Ralstonia solanacearum, Pseudomonas aeruginosa) more effectively than Gram-positive bacteria ( Micrococcus luteus and Bacillus megaterium), indicating that the duplicated chitin-binding domain, uncommon in chitinases, is essential for bacterial agglutination. Galactose, glucose, and lactose relieved agglutination, suggesting that BjCHI1 interacts with the carbohydrate components of the Gram-negative bacterial cell wall. Retention of chitinase and bacterial agglutination activities in transplastomic tobacco extracts implicates that BjCHI1 is potentially useful against both fungal and bacterial phytopathogens in agriculture.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: not found
          • Book: not found

          Molecular Cloning : A Laboratory Manual

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plastid transformation in higher plants.

            Pal Maliga (2003)
            Plastids of higher plants are semi-autonomous organelles with a small, highly polyploid genome and their own transcription-translation machinery. This review provides an overview of the technology for the genetic modification of the plastid genome including: vectors, marker genes and gene design, the use of gene knockouts and over-expression to probe plastid function and the application of site-specific recombinases for excision of target DNA. Examples for applications in basic science include the study of plastid gene transcription, mRNA editing, photosynthesis and evolution. Examples for biotechnological applications are incorporation of transgenes in the plastid genome for containment and high-level expression of recombinant proteins for pharmaceutical and industrial applications. Plastid transformation is routine only in tobacco. Progress in implementing the technology in other crops is discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antifungal Hydrolases in Pea Tissue : II. Inhibition of Fungal Growth by Combinations of Chitinase and beta-1,3-Glucanase.

              Chitinase and beta-1,3-glucanase purified from pea pods acted synergistically in the degradation of fungal cell walls. The antifungal potential of the two enzymes was studied directly by adding protein preparations to paper discs placed on agar plates containing germinated fungal spores. Protein extracts from pea pods infected with Fusarium solani f.sp. phaseoli, which contained high activities of chitinase and beta-1,3-glucanase, inhibited growth of 15 out of 18 fungi tested. Protein extracts from uninfected pea pods, which contained low activities of chitinase and beta-1,3-glucanase, did not inhibit fungal growth. Purified chitinase and beta-1,3-glucanase, tested individually, did not inhibit growth of most of the test fungi. Only Trichoderma viride was inhibited by chitinase alone, and only Fusarium solani f.sp. pisi was inhibited by beta-1,3-glucanase alone. However, combinations of purified chitinase and beta-1,3-glucanase inhibited all fungi tested as effectively as crude protein extracts containing the same enzyme activities. The pea pathogen, Fusarium solani f.sp. pisi, and the nonpathogen of peas, Fusarium solani f.sp. phaseoli, were similarly strongly inhibited by chitinase and beta-1,3-glucanase, indicating that the differential pathogenicity of the two fungi is not due to differential sensitivity to the pea enzymes. Inhibition of fungal growth was caused by the lysis of the hyphal tips.
                Bookmark

                Author and article information

                Journal
                J Exp Bot
                jexbot
                exbotj
                Journal of Experimental Botany
                Oxford University Press
                0022-0957
                1460-2431
                September 2008
                31 July 2008
                31 July 2008
                : 59
                : 12
                : 3475-3484
                Affiliations
                [1 ]School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
                [2 ]BioMarka, School of Agriculture and Food Systems, The University of Melbourne, Victoria 3010, Australia
                Author notes
                []To whom correspondence should be addressed. E-mail: mlchye@ 123456hkucc.hku.hk
                [*]

                Present address: Department of Biotechnology, Bharathiar University, Coimbatore, Tamilnadu, India

                Article
                10.1093/jxb/ern197
                2529242
                18669819
                fe31bfbd-da71-4066-8d51-12824397073e
                © 2008 The Author(s).

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details)

                History
                : 17 May 2008
                : 2 July 2008
                : 3 July 2008
                Categories
                Research Papers

                Plant science & Botany
                bacterial agglutination,indian mustard,chloroplast transformation,chitin-binding domain,transplastomic tobacco,lectin,phytopathogens,pichia-expressed proteins

                Comments

                Comment on this article