+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lack of Fractalkine Receptor on Macrophages Impairs Spontaneous Recovery of Ribbon Synapses After Moderate Noise Trauma in C57BL/6 Mice

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Noise trauma causes loss of synaptic connections between cochlear inner hair cells (IHCs) and the spiral ganglion neurons (SGNs). Such synaptic loss can trigger slow and progressive degeneration of SGNs. Macrophage fractalkine signaling is critical for neuron survival in the injured cochlea, but its role in cochlear synaptopathy is unknown. Fractalkine, a chemokine, is constitutively expressed by SGNs and signals via its receptor CX 3CR1 that is expressed on macrophages. The present study characterized the immune response and examined the function of fractalkine signaling in degeneration and repair of cochlear synapses following noise trauma. Adult mice wild type, heterozygous and knockout for CX 3CR1 on a C57BL/6 background were exposed for 2 h to an octave band noise at 90 dB SPL. Noise exposure caused temporary shifts in hearing thresholds without any evident loss of hair cells in CX 3CR1 heterozygous mice that have intact fractalkine signaling. Enhanced macrophage migration toward the IHC-synaptic region was observed immediately after exposure in all genotypes. Synaptic immunolabeling revealed a rapid loss of ribbon synapses throughout the basal turn of the cochlea of all genotypes. The damaged synapses spontaneously recovered in mice with intact CX 3CR1. However, CX 3CR1 knockout (KO) animals displayed enhanced synaptic degeneration that correlated with attenuated suprathreshold neural responses at higher frequencies. Exposed CX 3CR1 KO mice also exhibited increased loss of IHCs and SGN cell bodies compared to exposed heterozygous mice. These results indicate that macrophages can promote repair of damaged synapses after moderate noise trauma and that repair requires fractalkine signaling.

          Related collections

          Most cited references 77

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion.

          The seven-transmembrane receptor CX(3)CR1 is a specific receptor for the novel CX(3)C chemokine fractalkine (FKN) (neurotactin). In vitro data suggest that membrane anchoring of FKN, and the existence of a shed, soluble FKN isoform allow for both adhesive and chemoattractive properties. Expression on activated endothelium and neurons defines FKN as a potential target for therapeutic intervention in inflammatory conditions, particularly central nervous system diseases. To investigate the physiological function of CX(3)CR1-FKN interactions, we generated a mouse strain in which the CX(3)CR1 gene was replaced by a green fluorescent protein (GFP) reporter gene. In addition to the creation of a mutant CX(3)CR1 locus, this approach enabled us to assign murine CX(3)CR1 expression to monocytes, subsets of NK and dendritic cells, and the brain microglia. Analysis of CX(3)CR1-deficient mice indicates that CX(3)CR1 is the only murine FKN receptor. Yet, defying anticipated FKN functions, absence of CX(3)CR1 interferes neither with monocyte extravasation in a peritonitis model nor with DC migration and differentiation in response to microbial antigens or contact sensitizers. Furthermore, a prominent response of CX(3)CR1-deficient microglia to peripheral nerve injury indicates unimpaired neuronal-glial cross talk in the absence of CX(3)CR1.
            • Record: found
            • Abstract: found
            • Article: not found

            Adding insult to injury: cochlear nerve degeneration after "temporary" noise-induced hearing loss.

            Overexposure to intense sound can cause temporary or permanent hearing loss. Postexposure recovery of threshold sensitivity has been assumed to indicate reversal of damage to delicate mechano-sensory and neural structures of the inner ear and no persistent or delayed consequences for auditory function. Here, we show, using cochlear functional assays and confocal imaging of the inner ear in mouse, that acoustic overexposures causing moderate, but completely reversible, threshold elevation leave cochlear sensory cells intact, but cause acute loss of afferent nerve terminals and delayed degeneration of the cochlear nerve. Results suggest that noise-induced damage to the ear has progressive consequences that are considerably more widespread than are revealed by conventional threshold testing. This primary neurodegeneration should add to difficulties hearing in noisy environments, and could contribute to tinnitus, hyperacusis, and other perceptual anomalies commonly associated with inner ear damage.
              • Record: found
              • Abstract: found
              • Article: not found

              Control of microglial neurotoxicity by the fractalkine receptor.

              Microglia, the resident inflammatory cells of the CNS, are the only CNS cells that express the fractalkine receptor (CX3CR1). Using three different in vivo models, we show that CX3CR1 deficiency dysregulates microglial responses, resulting in neurotoxicity. Following peripheral lipopolysaccharide injections, Cx3cr1-/- mice showed cell-autonomous microglial neurotoxicity. In a toxic model of Parkinson disease and a transgenic model of amyotrophic lateral sclerosis, Cx3cr1-/- mice showed more extensive neuronal cell loss than Cx3cr1+ littermate controls. Augmenting CX3CR1 signaling may protect against microglial neurotoxicity, whereas CNS penetration by pharmaceutical CX3CR1 antagonists could increase neuronal vulnerability.

                Author and article information

                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                13 June 2019
                : 13
                1Department of Otolaryngology, Washington University School of Medicine , St. Louis, MO, United States
                2Program in Audiology and Communication Sciences, Washington University School of Medicine , St. Louis, MO, United States
                Author notes

                Edited by: Isabel Varela-Nieto, Spanish National Research Council (CSIC), Spain

                Reviewed by: Laura Astolfi, University of Padua, Italy; Athanasia Warnecke, Hannover Medical School, Germany

                This article was submitted to Neurodegeneration, a section of the journal Frontiers in Neuroscience

                Copyright © 2019 Kaur, Clayman, Nash, Schrader, Warchol and Ohlemiller.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Figures: 7, Tables: 0, Equations: 0, References: 77, Pages: 16, Words: 0
                Funded by: National Institute on Deafness and Other Communication Disorders 10.13039/100000055
                Original Research


                c57bl/6 mice, cochlea, fractalkine, macrophages, noise-induced hearing loss, ribbon synapses


                Comment on this article