31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of gender, digit ratio, and menstrual cycle on intrinsic brain functional connectivity: A whole‐brain, voxel‐wise exploratory study using simultaneous local and global functional connectivity mapping

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Gender and sex hormones influence brain function, but their effects on functional network organization within the brain are not yet understood.

          Methods

          We investigated the influence of gender, prenatal sex hormones (estimated by the 2D:4D digit ratio), and the menstrual cycle on the intrinsic functional network organization of the brain (as measured by 3T resting‐state functional MRI (rs‐fMRI)) using right‐handed, age‐matched university students (100 males and 100 females). The mean (± SD) age was 20.9 ± 1.5 (range: 18–24) years and 20.8 ± 1.3 (range: 18–24) years for males and females, respectively. Using two parameters derived from the normalized alpha centrality analysis (one for local and another for global connectivity strength), we created mean functional connectivity strength maps.

          Results

          There was a significant difference between the male mean map and female mean map in the distributions of network properties in almost all cortical regions and the basal ganglia but not in the medial parietal, limbic, and temporal regions and the thalamus. A comparison between the mean map for the low 2D:4D digit ratio group (indicative of high exposure to testosterone during the prenatal period) and that for the high 2D:4D digit ratio group revealed a significant difference in the network properties of the medial parietal region for males and in the temporal region for females. The menstrual cycle affected network organization in the brain, which varied with the 2D:4D digit ratio. Most of these findings were reproduced with our other datasets created with different preprocessing steps.

          Conclusions

          The results suggest that differences in gender, prenatal sex hormone exposure, and the menstrual cycle are useful for understanding the normal brain and investigating the mechanisms underlying the variable prevalence and symptoms of neurological and psychiatric diseases.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: not found
          • Article: not found

          The assessment and analysis of handedness: The Edinburgh inventory

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.

            An anatomical parcellation of the spatially normalized single-subject high-resolution T1 volume provided by the Montreal Neurological Institute (MNI) (D. L. Collins et al., 1998, Trans. Med. Imag. 17, 463-468) was performed. The MNI single-subject main sulci were first delineated and further used as landmarks for the 3D definition of 45 anatomical volumes of interest (AVOI) in each hemisphere. This procedure was performed using a dedicated software which allowed a 3D following of the sulci course on the edited brain. Regions of interest were then drawn manually with the same software every 2 mm on the axial slices of the high-resolution MNI single subject. The 90 AVOI were reconstructed and assigned a label. Using this parcellation method, three procedures to perform the automated anatomical labeling of functional studies are proposed: (1) labeling of an extremum defined by a set of coordinates, (2) percentage of voxels belonging to each of the AVOI intersected by a sphere centered by a set of coordinates, and (3) percentage of voxels belonging to each of the AVOI intersected by an activated cluster. An interface with the Statistical Parametric Mapping package (SPM, J. Ashburner and K. J. Friston, 1999, Hum. Brain Mapp. 7, 254-266) is provided as a freeware to researchers of the neuroimaging community. We believe that this tool is an improvement for the macroscopical labeling of activated area compared to labeling assessed using the Talairach atlas brain in which deformations are well known. However, this tool does not alleviate the need for more sophisticated labeling strategies based on anatomical or cytoarchitectonic probabilistic maps.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The brain's default network: anatomy, function, and relevance to disease.

              Thirty years of brain imaging research has converged to define the brain's default network-a novel and only recently appreciated brain system that participates in internal modes of cognition. Here we synthesize past observations to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment. Analysis of connectional anatomy in the monkey supports the presence of an interconnected brain system. Providing insight into function, the default network is active when individuals are engaged in internally focused tasks including autobiographical memory retrieval, envisioning the future, and conceiving the perspectives of others. Probing the functional anatomy of the network in detail reveals that it is best understood as multiple interacting subsystems. The medial temporal lobe subsystem provides information from prior experiences in the form of memories and associations that are the building blocks of mental simulation. The medial prefrontal subsystem facilitates the flexible use of this information during the construction of self-relevant mental simulations. These two subsystems converge on important nodes of integration including the posterior cingulate cortex. The implications of these functional and anatomical observations are discussed in relation to possible adaptive roles of the default network for using past experiences to plan for the future, navigate social interactions, and maximize the utility of moments when we are not otherwise engaged by the external world. We conclude by discussing the relevance of the default network for understanding mental disorders including autism, schizophrenia, and Alzheimer's disease.
                Bookmark

                Author and article information

                Contributors
                kaneoke@wakayama-med.ac.jp
                Journal
                Brain Behav
                Brain Behav
                10.1002/(ISSN)2157-9032
                BRB3
                Brain and Behavior
                John Wiley and Sons Inc. (Hoboken )
                2162-3279
                19 December 2017
                January 2018
                : 8
                : 1 ( doiID: 10.1002/brb3.2018.8.issue-1 )
                : e00890
                Affiliations
                [ 1 ] Department of System Neurophysiology Graduate School of Wakayama Medical University Wakayama Japan
                [ 2 ] Wakayama‐Minami Radiology Clinic Wakayama Japan
                Author notes
                [*] [* ] Correspondence

                Yoshiki Kaneoke, Department of System Neurophysiology, Graduate School of Wakayama Medical University, Wakayama, Japan.

                Email: kaneoke@ 123456wakayama-med.ac.jp

                Author information
                http://orcid.org/0000-0003-4264-4894
                Article
                BRB3890
                10.1002/brb3.890
                5853634
                29568687
                fe3c0a82-d46b-46d6-83a8-2127d5bf65c3
                © 2017 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 September 2017
                : 08 November 2017
                : 15 November 2017
                Page count
                Figures: 5, Tables: 5, Pages: 15, Words: 10901
                Funding
                Funded by: Japan Society for the Promotion of Science
                Award ID: 24591303
                Award ID: 25350994
                Categories
                Original Research
                Original Research
                Custom metadata
                2.0
                brb3890
                January 2018
                Converter:WILEY_ML3GV2_TO_NLMPMC version:version=5.3.2.2 mode:remove_FC converted:19.02.2018

                Neurosciences
                2d:4d digit ratio,fmri,menstrual cycle,normalized alpha centrality,prenatal sex hormones

                Comments

                Comment on this article