+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Clinical Heterogeneity of Pseudohypoparathyroidism: From Hyper- to Hypocalcemia

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Pseudohypoparathyroidism (PHP) is a rare inherited syndrome characterized by parathyroid hormone (PTH) resistance and is frequently associated with Albright’s hereditary osteodystrophy and resistance to other cAMP-mediated hormones. The usual neonatal presentation is mild primary hypothyroidism secondary to resistance to thyroid-stimulating hormone; hypocalcemia usually develops after age 3–5 years. This work describes the diversity in the clinical expression and course of PHP, with emphasis on calcium levels by age and treatment, in 8 children under long-term follow-up at our pediatric tertiary center. The calcium levels at presentation ranged from transient neonatal hypocalcemia to infantile hypercalcemia to childhood/adolescence hypocalcemia. Interestingly, relative hypocalciuria at diagnosis and during therapy, in the presence of renal PTH resistance, was the rule. These findings indicate that transient neonatal hypocalcemia associated with other clinical features or a family history of PHP may be a flag for clinicians to screen for PTH resistance later in life. In addition, PTH resistance may be missed by surveying calcium levels only; thus the PTH levels have to be checked as well. In addition, the recommendation for patients with hypoparathyroidism that strict low-normal calcium levels be maintained during therapy in order to prevent hypercalciuria is probably not applicable in PHP.

          Related collections

          Most cited references 21

          • Record: found
          • Abstract: found
          • Article: not found

          A GNAS1 imprinting defect in pseudohypoparathyroidism type IB.

          Pseudohypoparathyroidism type IB (PHPIB) is characterized by renal resistance to parathyroid hormone (PTH) and the absence of other endocrine or physical abnormalities. Familial PHPIB has been mapped to 20q13, near GNAS1, which encodes G(s)alpha, the G protein alpha-subunit required for receptor-stimulated cAMP generation. However, G(s)alpha function is normal in blood cells from PHPIB patients, ruling out mutations within the G(s)alpha coding region. In mice G(s)alpha is expressed only from the maternal allele in renal proximal tubules (the site of PTH action) but is biallelically expressed in most other tissues. Studies in patients with Albright hereditary osteodystrophy suggest a similar G(s)alpha imprinting pattern in humans. Here we identify a region upstream of the G(s)alpha promoter that is normally methylated on the maternal allele and unmethylated on the paternal allele, but that is unmethylated on both alleles in all 13 PHPIB patients studied. Within this region is an alternative promoter and first exon (exon 1A), generating transcripts that are normally expressed only from the paternal allele, but that are biallelically expressed in PHPIB patients. Therefore, PHPIB is associated with a paternal-specific imprinting pattern of the exon 1A region on both alleles, which may lead to decreased G(s)alpha expression in renal proximal tubules. We propose that loss of exon 1A imprinting is the cause of PHPIB.
            • Record: found
            • Abstract: found
            • Article: not found

            Imprinting in Albright's hereditary osteodystrophy.

            Review of published reports of Albright's hereditary osteodystrophy (AHO) involving two or more generations shows a marked excess of maternal transmission. Full expression of the gene (AHO + hormone resistance, pseudohypoparathyroidism) occurs in maternally transmitted cases and partial expression (AHO alone) when the gene is inherited from the father, suggesting the involvement of genomic imprinting in the expression of this disorder.
              • Record: found
              • Abstract: found
              • Article: not found

              Growth hormone-releasing hormone resistance in pseudohypoparathyroidism type ia: new evidence for imprinting of the Gs alpha gene.

              Heterozygous inactivating mutations in the Gs alpha gene cause Albright's hereditary osteodystrophy. Consistent with the observation that only maternally inherited mutations lead to resistance to hormone action [pseudohypoparathyroidism type Ia (PHP Ia)], recent studies provided evidence for a predominant maternal origin of Gs alpha transcripts in endocrine organs, such as thyroid, gonad, and pituitary. The aim of this study was to investigate the presence of pituitary resistance to hypothalamic hormones acting via Gs alpha-coupled receptors in patients with PHP Ia. Six of nine patients showed an impaired GH responsiveness to GHRH plus arginine, consistent with a complete GH deficiency (GH peak from 2.6-8.6 microg/liter, normal > 16.5), and partial (GH peak 13.9 and 13.6 microg/liter) and normal responses were found in two and one patient, respectively. Accordingly, IGF-I levels were below and in the low-normal range in seven and two patients. All patients had a normal cortisol response to 1 microg ACTH test, suggesting a normal corticotroph function that was confirmed by a normal ACTH and cortisol response to CRH test in three patients. In conclusion, we report that in addition to PTH and TSH resistance, patients with PHP Ia display variable degrees of GHRH resistance, consistent with Gs alpha imprinting in human pituitary.

                Author and article information

                Horm Res Paediatr
                Hormone Research in Paediatrics
                S. Karger AG
                September 2008
                29 July 2008
                : 70
                : 3
                : 137-144
                aInstitute for Endocrinology and Diabetes, National Center for Childhood Diabetes, and bNephrology and Dialysis Unit, Schneider Children’s Medical Center of Israel, Petach Tikva, and cSackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
                137658 Horm Res 2008;70:137–144
                © 2008 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Tables: 3, References: 31, Pages: 8
                Original Paper


                Comment on this article