56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      In Vivo Robustness Analysis of Cell Division Cycle Genes in Saccharomyces cerevisiae

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intracellular biochemical parameters, such as the expression level of gene products, are considered to be optimized so that a biological system, including the parameters, works effectively. Those parameters should have some permissible range so that the systems have robustness against perturbations, such as noise in gene expression. However, little is known about the permissible range in real cells because there has been no experimental technique to test it. In this study, we developed a genetic screening method, named “genetic tug-of-war” (gTOW) that evaluates upper limit copy numbers of genes in a model eukaryote Saccharomyces cerevisiae, and we applied it for 30 cell-cycle related genes ( CDC genes). The experiment provided unique quantitative data that could be used to argue the system-level properties of the cell cycle such as robustness and fragility. The data were used to evaluate the current computational model, and refinements to the model were suggested.

          Synopsis

          Robustness is a property of a system that attempts to maintain its functions against internal and external perturbations. It is one of the fundamental and ubiquitously observed system-level properties of biological systems. Understanding the cellular robustness is important, not only to gain insights in biology, but also to identify potential therapeutic targets. Robustness is estimated by measuring how much parameters can be perturbed without disrupting essential functions; comprehensive, as well as quantitative perturbations of intracellular parameters, such as gene expression, are essential for solid robustness analysis. However, the lack of experimental methodology for the comprehensive quantification and defined perturbation of parameters has prevented experimental analyses of cellular robustness. The authors developed a novel genetic screening method named “genetic tug-of-war” (gTOW) that allows systematic measurement of upper limit gene copy number. gTOW applied for the robustness analysis of cell division cycle system in the model eukaryote, Saccharomyces cerevisiae, and revealed the point of fragility in the system. The gTOW method is particularly suitable for systems biology research and demonstrates the value of comprehensive and quantitative perturbation experiment to uncover system-level properties of the cellular system.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Robustness in simple biochemical networks.

          Cells use complex networks of interacting molecular components to transfer and process information. These "computational devices of living cells" are responsible for many important cellular processes, including cell-cycle regulation and signal transduction. Here we address the issue of the sensitivity of the networks to variations in their biochemical parameters. We propose a mechanism for robust adaptation in simple signal transduction networks. We show that this mechanism applies in particular to bacterial chemotaxis. This is demonstrated within a quantitative model which explains, in a unified way, many aspects of chemotaxis, including proper responses to chemical gradients. The adaptation property is a consequence of the network's connectivity and does not require the 'fine-tuning' of parameters. We argue that the key properties of biochemical networks should be robust in order to ensure their proper functioning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast.

            Haploinsufficiency is defined as a dominant phenotype in diploid organisms that are heterozygous for a loss-of-function allele. Despite its relevance to human disease, neither the extent of haploinsufficiency nor its precise molecular mechanisms are well understood. We used the complete set of Saccharomyces cerevisiae heterozygous deletion strains to survey the genome for haploinsufficiency via fitness profiling in rich (YPD) and minimal media to identify all genes that confer a haploinsufficient growth defect. This assay revealed that approximately 3% of all approximately 5900 genes tested are haploinsufficient for growth in YPD. This class of genes is functionally enriched for metabolic processes carried out by molecular complexes such as the ribosome. Much of the haploinsufficiency in YPD is alleviated by slowing the growth rate of each strain in minimal media, suggesting that certain gene products are rate limiting for growth only in YPD. Overall, our results suggest that the primary mechanism of haploinsufficiency in yeast is due to insufficient protein production. We discuss the relevance of our findings in yeast to human haploinsufficiency disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ultrasensitivity in the mitogen-activated protein kinase cascade.

              The mitogen-activated protein kinase (MAPK) cascade is a highly conserved series of three protein kinases implicated in diverse biological processes. Here we demonstrate that the cascade arrangement has unexpected consequences for the dynamics of MAPK signaling. We solved the rate equations for the cascade numerically and found that MAPK is predicted to behave like a highly cooperative enzyme, even though it was not assumed that any of the enzymes in the cascade were regulated cooperatively. Measurements of MAPK activation in Xenopus oocyte extracts confirmed this prediction. The stimulus/response curve of the MAPK was found to be as steep as that of a cooperative enzyme with a Hill coefficient of 4-5, well in excess of that of the classical allosteric protein hemoglobin. The shape of the MAPK stimulus/ response curve may make the cascade particularly appropriate for mediating processes like mitogenesis, cell fate induction, and oocyte maturation, where a cell switches from one discrete state to another.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                pgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                July 2006
                14 July 2006
                5 June 2006
                : 2
                : 7
                : e111
                Affiliations
                [1 ] ERATO-SORST Kitano Symbiotic Systems Project, Japan Science and Technology Agency, Shibuya-ku, Tokyo, Japan
                [2 ] The Systems Biology Institute, Shibuya-ku, Tokyo, Japan
                [3 ] Sony Computer Science Laboratories Incorporated, Shinagawa, Tokyo, Japan
                Brandeis University, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: hisaom@ 123456symbio.jst.go.jp
                Article
                06-PLGE-RA-0127R2 plge-02-07-06
                10.1371/journal.pgen.0020111
                1500812
                16839182
                fe42eb38-18c6-4389-adfc-fb7ea64161ea
                Copyright: © 2006 Moriya et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 12 April 2006
                : 5 June 2006
                Page count
                Pages: 12
                Categories
                Research Article
                Bioinformatics - Computational Biology
                Systems Biology
                Genetics/Genomics
                Saccharomyces
                Custom metadata
                Moriya H, Shimizu-Yoshida Y, Kitano H (2006) In vivo robustness analysis of cell division cycle genes in Saccharomyces cerevisiae. PLoS Genet 2(7): e111. DOI: 10.1371/journal.pgen.0020111

                Genetics
                Genetics

                Comments

                Comment on this article