24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human Health Risk Assessment of Toxic Elements in Farmland Topsoil with Source Identification in Jilin Province, China

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The presence of toxic elements in agricultural soils from anthropogenic activities is a potential threat to human health through the food chain. In this study, the concentration of toxic elements in 122 agricultural topsoil composite samples were determined in order to study the current status, identify their sources and assess the level of pollution and human health risk. The results showed that the mean concentrations of Zn, Cu, Pb, Cd, Hg and As in the farmland topsoil were 21.72, 15.09, 36.08, 0.2451, 0.0378 and 4.957 mg·kg −1, respectively. The spatial distribution showed that the soils were mainly contaminated by Cd, Pb and Hg in midwest Jilin but by Cu and As in the east. According to the pollution index (Pi), Nemerow integrated pollution index (PN) and Geo-Accumulation Index ( I geo ), Cd and Pb were the main pollutants in the soils. The occurrence of these elements was caused by anthropogenic activities and they were concentrated in the Songyuan-Changchun-Siping economic belt. There is limited non-carcinogenic and carcinogenic health risk to humans. Principal component analyses suggest the Pb, Cd and Hg soil contamination was mainly derived from anthropogenic activities in the Midwest, but all examined toxic elements in the east were mainly due to geogenic anomalies and came from atmospheric deposition.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Soil contamination in China: current status and mitigation strategies.

          China faces great challenges in protecting its soil from contamination caused by rapid industrialization and urbanization over the last three decades. Recent nationwide surveys show that 16% of the soil samples, 19% for the agricultural soils, are contaminated based on China’s soil environmental quality limits, mainly with heavy metals and metalloids. Comparisons with other regions of the world show that the current status of soil contamination, based on the total contaminant concentrations, is not worse in China. However, the concentrations of some heavy metals in Chinese soils appear to be increasing at much greater rates. Exceedance of the contaminant limits in food crops is widespread in some areas, especially southern China, due to elevated inputs of contaminants, acidic nature of the soil and crop species or cultivars prone to heavy metal accumulation. Minimizing the transfer of contaminants from soil to the food chain is a top priority. A number of options are proposed, including identification of the sources of contaminants to agricultural systems, minimization of contaminant inputs, reduction of heavy metal phytoavailability in soil with liming or other immobilizing materials, selection and breeding of low accumulating crop cultivars, adoption of appropriate water and fertilizer management, bioremediation, and change of land use to grow nonfood crops. Implementation of these strategies requires not only technological advances, but also social-economic evaluation and effective enforcement of environmental protection law.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China.

            In this study, we investigated the pollution degree and spatial distribution of heavy metals and determined their sources in topsoil in a typical coal mine city, Lianyuan, Hunan Province, China. We collected 6078 soil surface samples in different land use types. And the concentrations of Zn, Cd, Cu, Hg, Pb, Sb, As, Mo, V, Mn, Fe and Cr were measured. The average contents of all heavy metals were lower than their corresponding Grade II values of Chinese Soil Quality Standard with the exception of Hg. However, average contents of twelve heavy metals, except for Mn, exceeded their background level in soils in Hunan Province. Based on one-way analysis of variance (ANOVA), the contents of Cu, Zn, Cd, Pb, Hg, Mo and V were related to the anthropogenic source and there were statistically significant differences in their concentrations among different land use patterns. The spatial variation of heavy metal was visualized by GIS. The PMF model was used to ascertain contamination sources of twelve heavy metals and apportion their source contributions in Lianyuan soils. The results showed that the source contributions of the natural source, atmospheric deposition, industrial activities and agricultural activities accounted for 33.6%, 26.05%, 23.44% and 16.91%, respectively.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Assessment of Heavy Metal Pollution and Health Risks in the Soil-Plant-Human System in the Yangtze River Delta, China

              Heavy metal (HM) contamination and accumulation is a serious problem around the world due to the toxicity, abundant sources, non-biodegradable properties, and accumulative behaviour of HMs. The degree of soil HM contamination in China, especially in the Yangtze River Delta, is prominent. In this study, 1822 pairs of soil and crop samples at corresponding locations were collected from the southern Yangtze River Delta of China, and the contents of Ni, Cr, Zn, Cd, As, Cu, Hg, and Pb were measured. The single pollution index in soil (SPI) and Nemerow composite pollution index (NCPI) were used to assess the degree of HM pollution in soil, and the crop pollution index (CPI) was used to explore the degree of HM accumulation in crops. The bioaccumulation factor (BAF) was used to investigate the translocation of heavy metals in the soil-crop system. The health risks caused by HMs were calculated based on the model released by the U.S. Environmental Protection Agency. The SPIs of all elements were at the unpolluted level. The mean NCPI was at the alert level. The mean CPIs were in the following decreasing order: Ni (1.007) > Cr (0.483) > Zn (0.335) > Cd (0.314) > As (0.232) > Cu (0.187) > Hg (0.118) > Pb (0.105). Only the mean content of Ni in the crops exceeded the national standard value. The standard exceeding rates were used to represent the percentage of samples whose heavy metal content is higher than the corresponding national standard values. The standard exceeding rates of Cu, Hg, and Cd in soil were significantly higher than corresponding values in crops. Meanwhile, the standard exceeding rates of Ni, As, and Cr in crops were significantly higher than corresponding values in soil. The chronic daily intake (CDI) of children (13.8 × 10−3) was the largest among three age groups, followed by adults (6.998 × 10−4) and seniors (5.488 × 10−4). The bioaccumulation factors (BAFs) of all crops followed the order Cd (0.249) > Zn (0.133) > As (0.076) > Cu (0.064) > Ni (0.018) > Hg (0.011) > Cr (0.010) > Pb (0.001). Therefore, Cd was most easily absorbed by crops, and different crops had different capacities to absorb HMs. The hazard quotient (HQ) represents the potential non-carcinogenic risk for an individual HM and it is an estimation of daily exposure to the human population that is not likely to represent an appreciable risk of deleterious effects during a lifetime. All the HQs of the HMs for the different age groups were significantly less than the alert value of 1.0 and were at a safe level. This indicated that citizens in the study area face low potential non-carcinogenic risk caused by HMs. The total carcinogens risks (TCRs) for children, adults, and seniors were 5.24 × 10−5, 2.65 × 10−5, and 2.08 × 10−5, respectively, all of which were less than the guideline value but at the alert level. Ingestion was the main pathway of carcinogen risk to human health.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                22 May 2018
                May 2018
                : 15
                : 5
                : 1040
                Affiliations
                [1 ]Institute of Natural Disaster Research, Department of Environment, Northeast Normal University, Changchun 130024, China; lifx144@ 123456nenu.edu.cn (F.L.); lisj983@ 123456nenu.edu.cn (S.L.); chenyn061@ 123456nenu.edu.cn (Y.C.); chenjw585@ 123456nenu.edu.cn (J.C.)
                [2 ]Jilin Academy of Agricultural Sciences, Changchun 130017, China; liangxuanhe_2004@ 123456163.com (X.L.); zhaoxin8401@ 123456163.com (X.Z.)
                Author notes
                [* ]Correspondence: zhangjq022@ 123456nenu.edu.cn (J.Z.); caotiehua2002@ 123456163.com (T.C.); Tel.: +86-0431-85099992 (J.Z.); +86-0431-13514405757 (T.C.)
                Author information
                https://orcid.org/0000-0001-6077-8429
                Article
                ijerph-15-01040
                10.3390/ijerph15051040
                5982079
                29789456
                fe44006b-3ccb-49dc-b9c5-fa0e415360cc
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 March 2018
                : 17 May 2018
                Categories
                Article

                Public health
                toxic elements,health risk assessment,farmland soils,jilin province
                Public health
                toxic elements, health risk assessment, farmland soils, jilin province

                Comments

                Comment on this article