29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Regionalized differentiation of CRH, TRH, and GHRH peptidergic neurons in the mouse hypothalamus

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          According to the updated prosomeric model, the hypothalamus is subdivided rostrocaudally into terminal and peduncular parts, and dorsoventrally into alar, basal, and floor longitudinal zones. In this context, we examined the ontogeny of peptidergic cell populations expressing Crh, Trh, and Ghrh mRNAs in the mouse hypothalamus, comparing their distribution relative to the major progenitor domains characterized by molecular markers such as Otp, Sim1, Dlx5, Arx, Gsh1, and Nkx2.1. All three neuronal types originate mainly in the peduncular paraventricular domain and less importantly at the terminal paraventricular domain; both are characteristic alar Otp/Sim1-positive areas. Trh and Ghrh cells appeared specifically at the ventral subdomain of the cited areas after E10.5. Additional Ghrh cells emerged separately at the tuberal arcuate area, characterized by Nkx2.1 expression. Crh-positive cells emerged instead in the central part of the peduncular paraventricular domain at E13.5 and remained there. In contrast, as development progresses (E13.5–E18.5) many alar Ghrh and Trh cells translocate into the alar subparaventricular area, and often also into underlying basal neighborhoods expressing Nkx2.1 and/or Dlx5, such as the tuberal and retrotuberal areas, becoming partly or totally depleted at the original birth sites. Our data correlate a topologic map of molecularly defined hypothalamic progenitor areas with three types of specific neurons, each with restricted spatial origins and differential migratory behavior during prenatal hypothalamic development. The study may be useful for detailed causal analysis of the respective differential specification mechanisms. The postulated migrations also contribute to our understanding of adult hypothalamic complexity.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1.

          Pallial and subpallial morphological subdivisions of the developing chicken telencephalon were examined by means of gene markers, compared with their expression pattern in the mouse. Nested expression domains of the genes Dlx-2 and Nkx-2.1, plus Pax-6-expressing migrated cells, are characteristic for the mouse subpallium. The genes Pax-6, Tbr-1, and Emx-1 are expressed in the pallium. The pallio-subpallial boundary lies at the interface between the Tbr-1 and Dlx-2 expression domains. Differences in the expression topography of Tbr-1 and Emx-1 suggest the existence of a novel "ventral pallium" subdivision, which is an Emx-1-negative pallial territory intercalated between the striatum and the lateral pallium. Its derivatives in the mouse belong to the claustroamygdaloid complex. Chicken genes homologous to these mouse genes are expressed in topologically comparable patterns during development. The avian subpallium, called "paleostriatum," shows nested Dlx-2 and Nkx-2.1 domains and migrated Pax-6-positive neurons; the avian pallium expresses Pax-6, Tbr-1, and Emx-1 and also contains a distinct Emx-1-negative ventral pallium, formed by the massive domain confusingly called "neostriatum." These expression patterns extend into the septum and the archistriatum, as they do into the mouse septum and amygdala, suggesting that the concepts of pallium and subpallium can be extended to these areas. The similarity of such molecular profiles in the mouse and chicken pallium and subpallium points to common sets of causal determinants. These may underlie similar histogenetic specification processes and field homologies, including some comparable connectivity patterns. Copyright 2000 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Forebrain gene expression domains and the evolving prosomeric model.

            The prosomeric model attributes morphological meaning to gene expression patterns and other data in the forebrain. It divides this territory into the same transverse segments (prosomeres) and longitudinal zones in all vertebrates. The axis and longitudinal zones of this model are widely accepted but controversy subsists about the number of prosomeres and their nature as segments. We describe difficulties encountered in establishing continuity between prosomeric limits postulated in the hypothalamus and intra-telencephalic limits. Such difficulties throw doubt on the intersegmental nature of these limits. We sketch a simplified model, in which the secondary prosencephalon (telencephalon plus hypothalamus) is a complex protosegment not subdivided into prosomeres, which exhibits patterning singularities. By contrast, we continue to postulate that prosomeres p1-p3 (i.e. the pretectum, thalamus and prethalamus) are the caudal forebrain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary.

              The thyroid-specific enhancer-binding protein (T/ebp) gene was disrupted by homologous recombination in embryonic stem cells to generate mice lacking T/EBP expression. Heterozygous animals developed normally, whereas mice homozygous for the disrupted gene were born dead and lacked the lung parenchyma. Instead, they had a rudimentary bronchial tree associated with an abnormal epithelium in their pleural cavities. Furthermore, the homozygous mice had no thyroid gland but had a normal parathyroid. In addition, extensive defects were found in the brain of the homozygous mice, especially in the ventral region of the forebrain. The entire pituitary, including the anterior, intermediate, and posterior pituitary, was also missing. In situ hybridization showed that the T/ebp gene is expressed in the normal thyroid, lung bronchial epithelium, and specific areas of the forebrain during early embryogenesis. These results establish that the expression of T/EBP, a transcription factor known to control thyroid-specific gene transcription, is also essential for organogenesis of the thyroid, lung, ventral forebrain, and pituitary.
                Bookmark

                Author and article information

                Contributors
                carmen.diaz@uclm.es
                Journal
                Brain Struct Funct
                Brain Struct Funct
                Brain Structure & Function
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                1863-2653
                1863-2661
                30 April 2013
                30 April 2013
                2014
                : 219
                : 1083-1111
                Affiliations
                [ ]Department of Medical Sciences, School of Medicine, Regional Centre for Biomedical Research and Institute for Research in Neurological Disabilities, University of Castilla-La Mancha, Calle Almansa, 14, 02006 Albacete, Spain
                [ ]Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
                Article
                554
                10.1007/s00429-013-0554-2
                4013449
                24337236
                fe444309-792f-47bc-bc31-94c190817730
                © The Author(s) 2013

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

                History
                : 18 January 2013
                : 11 April 2013
                Categories
                Original Article
                Custom metadata
                © Springer-Verlag Berlin Heidelberg 2014

                Neurology
                forebrain,hypothalamus,crh,trh,ghrh,migrations
                Neurology
                forebrain, hypothalamus, crh, trh, ghrh, migrations

                Comments

                Comment on this article