20
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The evolution of queen control over worker reproduction in the social Hymenoptera

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A trademark of eusocial insect species is reproductive division of labor, in which workers forego their own reproduction while the queen produces almost all offspring. The presence of the queen is key for maintaining social harmony, but the specific role of the queen in the evolution of eusociality remains unclear. A long-discussed scenario is that a queen either behaviorally or chemically sterilizes her workers. However, the demographic and ecological conditions that enable such manipulation are unknown. Accordingly, we propose a simple model of evolutionary dynamics that is based on haplodiploid genetics. We consider a mutation that acts in a queen, causing her to control the reproductive behavior of her workers. Our mathematical analysis yields precise conditions for the evolutionary emergence and stability of queen-induced worker sterility. These conditions do not depend on the queen's mating frequency. Moreover, we find that queen control is always established if it increases colony reproductive efficiency and can evolve even if it decreases colony efficiency. We further outline the conditions under which queen control is evolutionarily stable against invasion by mutant, reproductive workers.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          The evolution of eusociality.

          Eusociality, in which some individuals reduce their own lifetime reproductive potential to raise the offspring of others, underlies the most advanced forms of social organization and the ecologically dominant role of social insects and humans. For the past four decades kin selection theory, based on the concept of inclusive fitness, has been the major theoretical attempt to explain the evolution of eusociality. Here we show the limitations of this approach. We argue that standard natural selection theory in the context of precise models of population structure represents a simpler and superior approach, allows the evaluation of multiple competing hypotheses, and provides an exact framework for interpreting empirical observations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Conserved class of queen pheromones stops social insect workers from reproducing.

            A major evolutionary transition to eusociality with reproductive division of labor between queens and workers has arisen independently at least 10 times in the ants, bees, and wasps. Pheromones produced by queens are thought to play a key role in regulating this complex social system, but their evolutionary history remains unknown. Here, we identify the first sterility-inducing queen pheromones in a wasp, bumblebee, and desert ant and synthesize existing data on compounds that characterize female fecundity in 64 species of social insects. Our results show that queen pheromones are strikingly conserved across at least three independent origins of eusociality, with wasps, ants, and some bees all appearing to use nonvolatile, saturated hydrocarbons to advertise fecundity and/or suppress worker reproduction. These results suggest that queen pheromones evolved from conserved signals of solitary ancestors.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The role of queen pheromones in social insects: queen control or queen signal?

                Bookmark

                Author and article information

                Journal
                2017-02-16
                Article
                1702.04873
                fe5d8b76-3420-41e0-b2ce-e904635093e1

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                q-bio.PE

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article