63
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Auto-regulation of miRNA biogenesis by let-7 and Argonaute

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          SUMMARY

          MicroRNAs (miRNAs) comprise a large family of small RNA molecules that post-transcriptionally regulate gene expression in many biological pathways 1 . Most miRNAs are derived from long primary transcripts that undergo processing by Drosha to produce ~65 nucleotide (nt) precursors that are then cleaved by Dicer, resulting in the mature 22 nt forms 2, 3 . Serving as guides in Argonaute protein complexes, mature miRNAs use imperfect base-pairing to recognize sequences in mRNA transcripts, leading to translational repression and destabilization of the target mRNAs 4, 5 . Here we show that the miRNA complex also targets and regulates non-coding RNAs (ncRNAs) that serve as substrates for the miRNA processing pathway. We found that the C. elegans Argonaute, ALG-1, binds to a specific site at the 3′ end of let-7 miRNA primary transcripts and promotes downstream processing events. This interaction is mediated by mature let-7 miRNA via a conserved complementary site in its own primary transcript, thus creating a positive feedback loop. We further show that ALG-1 associates with let-7 primary transcripts in nuclear fractions. Argonaute also binds let-7 primary transcripts in human cells, demonstrating that the miRNA pathway targets non-coding RNAs in addition to protein-coding mRNAs across species. Moreover, our studies in C. elegans reveal a novel role for Argonaute in promoting biogenesis of a targeted transcript, expanding the functions of the miRNA pathway in gene regulation. This discovery of auto-regulation of let-7 biogenesis sets a new paradigm for controlling miRNA expression.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Gene silencing by microRNAs: contributions of translational repression and mRNA decay.

          Despite their widespread roles as regulators of gene expression, important questions remain about target regulation by microRNAs. Animal microRNAs were originally thought to repress target translation, with little or no influence on mRNA abundance, whereas the reverse was thought to be true in plants. Now, however, it is clear that microRNAs can induce mRNA degradation in animals and, conversely, translational repression in plants. Recent studies have made important advances in elucidating the relative contributions of these two different modes of target regulation by microRNAs. They have also shed light on the specific mechanisms of target silencing, which, although it differs fundamentally between plants and animals, shares some common features between the two kingdoms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Single-copy insertion of transgenes in Caenorhabditis elegans.

            At present, transgenes in Caenorhabditis elegans are generated by injecting DNA into the germline. The DNA assembles into a semistable extrachromosomal array composed of many copies of injected DNA. These transgenes are typically overexpressed in somatic cells and silenced in the germline. We have developed a method that inserts a single copy of a transgene into a defined site. Mobilization of a Mos1 transposon generates a double-strand break in noncoding DNA. The break is repaired by copying DNA from an extrachromosomal template into the chromosomal site. Homozygous single-copy insertions can be obtained in less than 2 weeks by injecting approximately 20 worms. We have successfully inserted transgenes as long as 9 kb and verified that single copies are inserted at the targeted site. Single-copy transgenes are expressed at endogenous levels and can be expressed in the female and male germlines.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Selective blockade of microRNA processing by Lin28.

              MicroRNAs (miRNAs) play critical roles in development, and dysregulation of miRNA expression has been observed in human malignancies. Recent evidence suggests that the processing of several primary miRNA transcripts (pri-miRNAs) is blocked posttranscriptionally in embryonic stem cells, embryonal carcinoma cells, and primary tumors. Here we show that Lin28, a developmentally regulated RNA binding protein, selectively blocks the processing of pri-let-7 miRNAs in embryonic cells. Using in vitro and in vivo studies, we found that Lin28 is necessary and sufficient for blocking Microprocessor-mediated cleavage of pri-let-7 miRNAs. Our results identify Lin28 as a negative regulator of miRNA biogenesis and suggest that Lin28 may play a central role in blocking miRNA-mediated differentiation in stem cells and in certain cancers.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                Nature
                0028-0836
                1476-4687
                5 April 2012
                28 June 2012
                28 December 2012
                : 486
                : 7404
                : 541-544
                Affiliations
                [1 ]Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
                [2 ]Department of Biology Education, Stockholm University, Stockholm, Sweden
                Author notes
                [4 ]Correspondence and requests for materials should be addressed to A.E.P. ( apasquinelli@ 123456ucsd.edu ), Phone: 858-822-3006, FAX: 858-822-3021
                [3]

                These authors contributed equally to this work.

                Article
                NIHMS368098
                10.1038/nature11134
                3387326
                22722835
                fe600091-7533-47ea-a1f0-d8b67edc3c7f

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article