25
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Improvement of Titanium Corrosion Resistance by Coating with Poly-Caprolactone and Poly-Caprolactone/Titanium Dioxide: Potential Application in Heart Valves

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heart diseases affect part of world population and generally involves the functioning of valves. Valves replacement is the most common treatment and the choice between synthetic or natural/biological implants depends on several factors. Synthetic implants have greater durability, whereas biological ones are more biocompatible. This work proposes the use of polymeric coating on titanium metal surface to increase implant biocompatibility. Poly-caprolactone (PCL) has demonstrated greater efficacy for biomedical applications due to its biocompatibility. It can easily form films and coat surfaces. Titanium discs were submitted to alkaline and thermal treatments and coated with 1%PCL and 1%PCL+TiO2. For both conditions, PCL crystals were found in titanium coated surface (SEM and EDX) and X-ray diffractogram confirmed PCL coating. Infrared Spectroscopy spectra showed both PCL and TiO2 characteristic peaks. Moreover, corrosion resistance of coated disc has considerably increased, proving the effectiveness of PCL as coating material and its potential application in cardiac valves.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: not found
          • Article: not found

          Surface modification of titanium, titanium alloys, and related materials for biomedical applications

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Polymeric heart valves: new materials, emerging hopes.

            Heart valve (HV) replacements are among the most widely used cardiovascular devices and are in rising demand. Currently, clinically available devices are restricted to slightly modified mechanical and bioprosthetic valves. Polymeric HVs could represent an attractive alternative to the existing prostheses, merging the superior durability of mechanical valves and the enhanced haemodynamic function of bioprosthetic valves. After early unsatisfactory clinical results, polymeric HVs did not reach commercialization, mainly owing to their limited durability. Recent advances in polymers, nanomaterials and surface modification techniques together with the emergence of novel biomaterials have resulted in improved biocompatibility and biostability. Advances in HV design and fabrication methods could also lead to polymeric HVs that are suitable for long-lasting implantation. Considering all these progresses, it is likely that the new generation of polymeric HVs will find successful long-term clinical applications in future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biomaterial applications in cardiovascular tissue repair and regeneration.

              Cardiovascular disease physically damages the heart, resulting in loss of cardiac function. Medications can help alleviate symptoms, but it is more beneficial to treat the root cause by repairing injured tissues, which gives patients better outcomes. Besides heart transplants, cardiac surgeons use a variety of methods for repairing different areas of the heart such as the ventricular septal wall and valves. A multitude of biomaterials are used in the repair and replacement of impaired heart tissues. These biomaterials fall into two main categories: synthetic and natural. Synthetic materials used in cardiovascular applications include polymers and metals. Natural materials are derived from biological sources such as human donor or harvested animal tissues. A new class of composite materials has emerged to take advantage of the benefits of the strengths and minimize the weaknesses of both synthetic and natural materials. This article reviews the current and prospective applications of biomaterials in cardiovascular therapies.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Journal
                mr
                Materials Research
                Mat. Res.
                ABM, ABC, ABPol (São Carlos, SP, Brazil )
                1516-1439
                1980-5373
                January 2018
                : 20
                : suppl 1
                : 126-133
                Affiliations
                [1] Poços de Caldas Minas Gerais orgnameUniversidade Federal de Alfenas orgdiv1Instituto de Ciência e Tecnologia Brazil
                Article
                S1516-14392017000700126
                10.1590/1980-5373-mr-2017-0425
                fe62db45-f7f6-456e-b7fd-cdd27a6e740d

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 07 December 2017
                : 29 April 2017
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 28, Pages: 8
                Product

                SciELO Brazil


                Poly-caprolactone,Titanium dioxide,Titanium,Coating,Heart Valves

                Comments

                Comment on this article