54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gata4 Is Required for Formation of the Genital Ridge in Mice

      research-article
      , , *
      PLoS Genetics
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In mammals, both testis and ovary arise from a sexually undifferentiated precursor, the genital ridge, which first appears during mid-gestation as a thickening of the coelomic epithelium on the ventromedial surface of the mesonephros. At least four genes ( Lhx9, Sf1, Wt1, and Emx2) have been demonstrated to be required for subsequent growth and maintenance of the genital ridge. However, no gene has been shown to be required for the initial thickening of the coelomic epithelium during genital ridge formation. We report that the transcription factor GATA4 is expressed in the coelomic epithelium of the genital ridge, progressing in an anterior-to-posterior (A-P) direction, immediately preceding an A-P wave of epithelial thickening. Mouse embryos conditionally deficient in Gata4 show no signs of gonadal initiation, as their coelomic epithelium remains a morphologically undifferentiated monolayer. The failure of genital ridge formation in Gata4-deficient embryos is corroborated by the absence of the early gonadal markers LHX9 and SF1. Our data indicate that GATA4 is required to initiate formation of the genital ridge in both XX and XY fetuses, prior to its previously reported role in testicular differentiation of the XY gonad.

          Author Summary

          During mammalian fetal development, the precursor of the testis or ovary first appears as a simple thickening, in a specific region, of the epithelial cell layer that lines the body cavity. The resulting structure is called the genital ridge, which then differentiates into either testis or ovary, depending on whether the sex chromosome constitution is XY or XX. A handful of genes, including Lhx9, Sf1, Wt1, and Emx2, are required to sustain the growth of the genital ridge. However, mice with mutations in any of these genes still undergo the initial step of epithelial thickening, suggesting that an additional step (or factor) is required to initiate genital ridge formation. We found that the evolutionarily conserved transcription factor GATA4 is expressed in the epithelium of the genital ridge before initial thickening. We produced a mouse with a Gata4 mutation in this tissue and demonstrated that the initial thickening does not take place; the mutant embryos fail to initiate gonad development. In support of this observation, the Gata4 mutant does not express the early gonadal markers LHX9 and SF1. These findings indicate that a genetically discrete, Gata4-dependent initiation step precedes the previously known processes that result in formation of testes and ovaries.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          WT-1 is required for early kidney development.

          In humans, germline mutations of the WT-1 tumor suppressor gene are associated with both Wilms' tumors and urogenital malformations. To develop a model system for the molecular analysis of urogenital development, we introduced a mutation into the murine WT-1 tumor suppressor gene by gene targeting in embryonic stem cells. The mutation resulted in embryonic lethality in homozygotes, and examination of mutant embryos revealed a failure of kidney and gonad development. Specifically, at day 11 of gestation, the cells of the metanephric blastema underwent apoptosis, the ureteric bud failed to grow out from the Wolffian duct, and the inductive events that lead to formation of the metanephric kidney did not occur. In addition, the mutation caused abnormal development of the mesothelium, heart, and lungs. Our results establish a crucial role for WT-1 in early urogenital development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis.

            The zinc finger transcription factor GATA4 has been implicated in heart development based on its early expression in precardiogenic splanchnic mesoderm and its ability to activate the expression of a number of cardiac-specific genes. To determine the role of GATA4 in embryogenesis, we generated mice homozygous for a GATA4 null allele. Homozygous GATA4 null mice arrested in development between E7.0 and E9.5 because of severe developmental abnormalities. Mutant embryos most notably lacked a primitive heart tube and foregut and developed partially outside the yolk sac. In the mutants, the two bilaterally symmetric promyocardial primordia failed to migrate ventrally but instead remained lateral and generated two independent heart tubes that contained differentiated cardiomyocytes. We show that these deformities resulted from a general loss in lateral to ventral folding throughout the embryo. GATA4 is most highly expressed within the precardiogenic splanchnic mesoderm at the posterior lip of the anterior intestinal portal, corresponding to the region of the embryo that undergoes ventral fusion. We propose that GATA4 is required for the migration or folding morphogenesis of the precardiogenic splanchnic mesodermal cells at the level of the AIP.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              GATA4 transcription factor is required for ventral morphogenesis and heart tube formation.

              Previous studies have suggested that the GATA4 transcription factor plays an important role in regulating mammalian cardiac development. In the studies described in this report we have used gene targeting to produce GATA4-deficient mice. Homozygous GATA4-deficient (GATA4-/-) mice died between 8.5 and 10.5 days post coitum (dpc). GATA4-/- embryos displayed severe defects in both rostral-to-caudal and lateral-to-ventral folding, which were reflected in a generalized disruption of the ventral body pattern. This resulted in the defective formation of an organized foregut and anterior intestinal pore, the failure to close both the amniotic cavity and yolk sac, and the uniform lack of a ventral pericardial cavity and heart tube. Analysis of cardiac development in the GATA4-/- mice demonstrated that these embryos developed splanchnic mesoderm, which differentiated into primitive cardiac myocytes that expressed contractile proteins. However, consistent with the observed defect in ventral morphogenesis, these GATA4-/- procardiomyocytes failed to migrate to the ventral midline to form a linear heart tube and instead formed aberrant cardiac structures in the anterior and dorsolateral regions of the embryo. The defect in ventral migration of the GATA4-/- procardiomyocytes was not cell intrinsic because GATA4-/- cardiac myocytes and endocardial cells populated the hearts of GATA4-/- -C57BL/6 chimeric mice. Taken together, these results demonstrated that GATA4 is not essential for the specification of the cardiac cell lineages. However, they define a critical role for GATA4 in regulating the rostral-to-caudal and lateral-to-ventral folding of the embryo that is needed for normal cardiac morphogenesis.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                July 2013
                July 2013
                11 July 2013
                : 9
                : 7
                : e1003629
                Affiliations
                [1]Whitehead Institute, Howard Hughes Medical Institute, and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
                Stowers Institute for Medical Research, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: Y-CH DCP. Performed the experiments: Y-CH LMO. Analyzed the data: Y-CH LMO. Wrote the paper: Y-CH DCP.

                Article
                PGENETICS-D-13-00597
                10.1371/journal.pgen.1003629
                3708810
                23874227
                fe78f23b-f404-4181-a762-368d7b858035
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 2 March 2013
                : 29 May 2013
                Page count
                Pages: 12
                Funding
                This work was supported by the Howard Hughes Medical Institute. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Developmental Biology
                Morphogenesis
                Sex Determination
                Sexual Differentiation
                Embryology
                Genetics
                Animal Genetics
                Gene Function
                Molecular Genetics
                Histology

                Genetics
                Genetics

                Comments

                Comment on this article