Blog
About

24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review presents a summary of recent progress and strategies in fabricating MOF-based nanostructures for electrochemical applications.

          Related collections

          Most cited references 250

          • Record: found
          • Abstract: found
          • Article: not found

          Issues and challenges facing rechargeable lithium batteries.

          Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium-ion batteries are the systems of choice, offering high energy density, flexible and lightweight design, and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based rechargeable batteries, highlight ongoing research strategies, and discuss the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Solar water splitting cells.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Li-O2 and Li-S batteries with high energy storage.

              Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable challenge; there are few options. Here we consider two: Li-air (O(2)) and Li-S. The energy that can be stored in Li-air (based on aqueous or non-aqueous electrolytes) and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Li-air and Li-S justify the continued research effort that will be needed.
                Bookmark

                Author and article information

                Journal
                EESNBY
                Energy Environ. Sci.
                Energy Environ. Sci.
                Royal Society of Chemistry (RSC)
                1754-5692
                1754-5706
                2015
                2015
                : 8
                : 7
                : 1837-1866
                Article
                10.1039/C5EE00762C
                © 2015
                Product
                Self URI (article page): http://xlink.rsc.org/?DOI=C5EE00762C

                Comments

                Comment on this article