78
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review presents a summary of recent progress and strategies in fabricating MOF-based nanostructures for electrochemical applications.

          Related collections

          Most cited references206

          • Record: found
          • Abstract: not found
          • Article: not found

          What Are Batteries, Fuel Cells, and Supercapacitors?

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Materials for fuel-cell technologies.

            Fuel cells convert chemical energy directly into electrical energy with high efficiency and low emission of pollutants. However, before fuel-cell technology can gain a significant share of the electrical power market, important issues have to be addressed. These issues include optimal choice of fuel, and the development of alternative materials in the fuel-cell stack. Present fuel-cell prototypes often use materials selected more than 25 years ago. Commercialization aspects, including cost and durability, have revealed inadequacies in some of these materials. Here we summarize recent progress in the search and development of innovative alternative materials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt.

              The prohibitive cost of platinum for catalyzing the cathodic oxygen reduction reaction (ORR) has hampered the widespread use of polymer electrolyte fuel cells. We describe a family of non-precious metal catalysts that approach the performance of platinum-based systems at a cost sustainable for high-power fuel cell applications, possibly including automotive power. The approach uses polyaniline as a precursor to a carbon-nitrogen template for high-temperature synthesis of catalysts incorporating iron and cobalt. The most active materials in the group catalyze the ORR at potentials within ~60 millivolts of that delivered by state-of-the-art carbon-supported platinum, combining their high activity with remarkable performance stability for non-precious metal catalysts (700 hours at a fuel cell voltage of 0.4 volts) as well as excellent four-electron selectivity (hydrogen peroxide yield <1.0%).
                Bookmark

                Author and article information

                Journal
                EESNBY
                Energy Environ. Sci.
                Energy Environ. Sci.
                Royal Society of Chemistry (RSC)
                1754-5692
                1754-5706
                2015
                2015
                : 8
                : 7
                : 1837-1866
                Article
                10.1039/C5EE00762C
                fe7bf761-8e47-4abe-8c62-9629be9b807f
                © 2015
                History

                Comments

                Comment on this article