36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Arachidonic acid inhibition of L-type calcium (Ca V1.3b) channels varies with accessory Ca Vβ subunits

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Arachidonic acid (AA) inhibits the activity of several different voltage-gated Ca 2+ channels by an unknown mechanism at an unknown site. The Ca 2+ channel pore-forming subunit (Ca Vα 1) is a candidate for the site of AA inhibition because T-type Ca 2+ channels, which do not require accessory subunits for expression, are inhibited by AA. Here, we report the unanticipated role of accessory Ca Vβ subunits on the inhibition of Ca V1.3b L-type (L-) current by AA. Whole cell Ba 2+ currents were measured from recombinant channels expressed in human embryonic kidney 293 cells at a test potential of −10 mV from a holding potential of −90 mV. A one-minute exposure to 10 µM AA inhibited currents with β 1b, β 3, or β 4 58, 51, or 44%, respectively, but with β 2a only 31%. At a more depolarized holding potential of −60 mV, currents were inhibited to a lesser degree. These data are best explained by a simple model where AA stabilizes Ca V1.3b in a deep closed-channel conformation, resulting in current inhibition. Consistent with this hypothesis, inhibition by AA occurred in the absence of test pulses, indicating that channels do not need to open to become inhibited. AA had no effect on the voltage dependence of holding potential–dependent inactivation or on recovery from inactivation regardless of Ca Vβ subunit. Unexpectedly, kinetic analysis revealed evidence for two populations of L-channels that exhibit willing and reluctant gating previously described for Ca V2 channels. AA preferentially inhibited reluctant gating channels, revealing the accelerated kinetics of willing channels. Additionally, we discovered that the palmitoyl groups of β 2a interfere with inhibition by AA. Our novel findings that the Ca Vβ subunit alters kinetic changes and magnitude of inhibition by AA suggest that Ca Vβ expression may regulate how AA modulates Ca 2+-dependent processes that rely on L-channels, such as gene expression, enzyme activation, secretion, and membrane excitability.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels.

          Voltage-gated L-type Ca2+ channels (LTCCs) containing a pore-forming alpha1D subunit (D-LTCCs) are expressed in neurons and neuroendocrine cells. Their relative contribution to total L-type Ca2+ currents and their physiological role and significance as a drug target remain unknown. Therefore, we generated D-LTCC deficient mice (alpha1D-/-) that were viable with no major disturbances of glucose metabolism. alpha1D-/-mice were deaf due to the complete absence of L-type currents in cochlear inner hair cells and degeneration of outer and inner hair cells. In wild-type controls, D-LTCC-mediated currents showed low activation thresholds and slow inactivation kinetics. Electrocardiogram recordings revealed sinoatrial node dysfunction (bradycardia and arrhythmia) in alpha1D-/- mice. We conclude that alpha1D can form LTCCs with negative activation thresholds essential for normal auditory function and control of cardiac pacemaker activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel alpha 1 subunits

            To identify and localize the protein products of genes encoding distinct L-type calcium channels in central neurons, anti-peptide antibodies specific for the class C and class D alpha 1 subunits were produced. Anti-CNC1 directed against class C immunoprecipitated 75% of the L-type channels solubilized from rat cerebral cortex and hippocampus. Anti-CND1 directed against class D immunoprecipitated only 20% of the L-type calcium channels. Immunoblotting revealed two size forms of the class C L-type alpha 1 subunit, LC1 and LC2, and two size forms of the class D L-type alpha 1 subunit, LD1 and LD2. The larger isoforms had apparent molecular masses of approximately 200-210 kD while the smaller isoforms were 180-190 kD, as estimated from electrophoresis in gels polymerized from 5% acrylamide. Immunocytochemical studies using CNC1 and CND1 antibodies revealed that the alpha 1 subunits of both L-type calcium channel subtypes are localized mainly in neuronal cell bodies and proximal dendrites. Relatively dense labeling was observed at the base of major dendrites in many neurons. Staining in more distal dendritic regions was faint or undetectable with CND1, while a more significant level of staining of distal dendrites was observed with CNC1, particularly in the dentate gyrus and the CA2 and CA3 areas of the hippocampus. Class C calcium channels were concentrated in clusters, while class D calcium channels were generally distributed in the cell surface membrane of cell bodies and proximal dendrites. Our results demonstrate multiple size forms and differential localization of two subtypes of L-type calcium channels in the cell bodies and proximal dendrites of central neurons. The differential localization and multiple size forms may allow these two channel subtypes to participate in distinct aspects of electrical signal integration and intracellular calcium signaling in neuronal cell bodies. The preferential localization of these calcium channels in cell bodies and proximal dendrites implies their involvement in regulation of calcium-dependent functions occurring in those cellular compartments such as protein phosphorylation, enzyme activity, and gene expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity.

              The spontaneous activity of pacemaker cells in the sino-atrial node (SAN) controls the heart rhythm and rate under physiological conditions. Pacemaker activity in SAN cells is due to the presence of the diastolic depolarization, a slow depolarization phase that drives the membrane voltage from the end of an action potential to the threshold of a new action potential. SAN cells express a wide array of ionic channels, but we have limited knowledge about their functional role in pacemaker activity and we still do not know which channels play a prominent role in the generation of the diastolic depolarization. It is thus important to provide genetic evidence linking the activity of genes coding for ionic channels to specific alterations of pacemaker activity of SAN cells. Here, we show that target inactivation of the gene coding for alpha(1D) (Ca(v)1.3) Ca(2+) channels in the mouse not only significantly slows pacemaker activity but also promotes spontaneous arrhythmia in SAN pacemaker cells. These alterations of pacemaker activity are linked to abolition of the major component of the L-type current (I(Ca,L)) activating at negative voltages. Pharmacological analysis of I(Ca,L) demonstrates that Ca(v)1.3 gene inactivation specifically abolishes I(Ca,L) in the voltage range corresponding to the diastolic depolarization. Taken together, our data demonstrate that Ca(v)1.3 channels play a major role in the generation of cardiac pacemaker activity by contributing to diastolic depolarization in SAN pacemaker cells.
                Bookmark

                Author and article information

                Journal
                J Gen Physiol
                J. Gen. Physiol
                jgp
                The Journal of General Physiology
                The Rockefeller University Press
                0022-1295
                1540-7748
                April 2009
                : 133
                : 4
                : 387-403
                Affiliations
                Department of Physiology and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01655
                Author notes
                Correspondence to Ann R. Rittenhouse: Ann.Rittenhouse@ 123456umassmed.edu
                Article
                200810047
                10.1085/jgp.200810047
                2699108
                19332620
                fe7e0075-b79a-4c82-8566-834a102d26c1
                © 2009 Roberts-Crowley and Rittenhouse

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.jgp.org/misc/terms.shtml). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 19 May 2008
                : 11 March 2009
                Categories
                Article

                Anatomy & Physiology
                Anatomy & Physiology

                Comments

                Comment on this article