83
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Paxillin LD4 Motif Binds PAK and PIX through a Novel 95-kD Ankyrin Repeat, ARF–GAP Protein: A Role in Cytoskeletal Remodeling

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Paxillin is a focal adhesion adaptor protein involved in the integration of growth factor- and adhesion-mediated signal transduction pathways. Repeats of a leucine-rich sequence named paxillin LD motifs (Brown M.C., M.S. Curtis, and C.E. Turner. 1998. Nature Struct. Biol. 5:677–678) have been implicated in paxillin binding to focal adhesion kinase (FAK) and vinculin. Here we demonstrate that the individual paxillin LD motifs function as discrete and selective protein binding interfaces. A novel scaffolding function is described for paxillin LD4 in the binding of a complex of proteins containing active p21 GTPase–activated kinase (PAK), Nck, and the guanine nucleotide exchange factor, PIX. The association of this complex with paxillin is mediated by a new 95-kD protein, p95PKL (paxillin-kinase linker), which binds directly to paxillin LD4 and PIX. This protein complex also binds to Hic-5, suggesting a conservation of LD function across the paxillin superfamily. Cloning of p95PKL revealed a multidomain protein containing an NH 2-terminal ARF–GAP domain, three ankyrin-like repeats, a potential calcium-binding EF hand, calmodulin-binding IQ motifs, a myosin homology domain, and two paxillin-binding subdomains (PBS). Green fluorescent protein- (GFP-) tagged p95PKL localized to focal adhesions/complexes in CHO.K1 cells. Overexpression in neuroblastoma cells of a paxillin LD4 deletion mutant inhibited lamellipodia formation in response to insulin-like growth fac- tor-1. Microinjection of GST–LD4 into NIH3T3 cells significantly decreased cell migration into a wound. These data implicate paxillin as a mediator of p21 GTPase–regulated actin cytoskeletal reorganization through the recruitment to nascent focal adhesion structures of an active PAK/PIX complex potentially via interactions with p95PKL.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors.

          Actin stress fibers are one of the major cytoskeletal structures in fibroblasts and are linked to the plasma membrane at focal adhesions. rho, a ras-related GTP-binding protein, rapidly stimulated stress fiber and focal adhesion formation when microinjected into serum-starved Swiss 3T3 cells. Readdition of serum produced a similar response, detectable within 2 min. This activity was due to a lysophospholipid, most likely lysophosphatidic acid, bound to serum albumin. Other growth factors including PDGF induced actin reorganization initially to form membrane ruffles, and later, after 5 to 10 min, stress fibers. For all growth factors tested the stimulation of focal adhesion and stress fiber assembly was inhibited when endogenous rho function was blocked, whereas membrane ruffling was unaffected. These data imply that rho is essential specifically for the coordinated assembly of focal adhesions and stress fibers induced by growth factors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The small GTP-binding protein rac regulates growth factor-induced membrane ruffling.

            The function of rac, a ras-related GTP-binding protein, was investigated in fibroblasts by microinjection. In confluent serum-starved Swiss 3T3 cells, rac1 rapidly stimulated actin filament accumulation at the plasma membrane, forming membrane ruffles. Several growth factors and activated H-ras also induced membrane ruffling, and this response was prevented by a dominant inhibitory mutant rac protein, N17rac1. This suggests that endogenous rac proteins are required for growth factor-induced membrane ruffling. In addition to membrane ruffling, a later response to both rac1 microinjection and some growth factors was the formation of actin stress fibers, a process requiring endogenous rho proteins. Using N17rac1 we have shown that these growth factors act through rac to stimulate this rho-dependent response. We propose that rac and rho are essential components of signal transduction pathways linking growth factors to the organization of polymerized actin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton.

              The GTPase RhoA has been implicated in various cellular activities, including the formation of stress fibers, motility, and cytokinesis. We recently reported on a p150 serine/threonine kinase (termed ROK alpha) binding RhoA only in its active GTP-bound state and on its cDNA; introduction of RhoA into HeLa cells resulted in translocation of the cytoplasmic kinase to plasma membranes, consistent with ROK alpha being a target for RhoA (T. Leung, E. Manser, L. Tan, and L. Lim, J. Biol. Chem. 256:29051-29054, 1995). Reanalysis of the cDNA revealed that ROK alpha contains an additional N-terminal region. We also isolated another cDNA which encoded a protein (ROK beta) with 90% identity to ROK alpha in the kinase domain. Both ROK alpha and ROK beta, which had a molecular mass of 160 kDa, contained a highly conserved cysteine/histidine-rich domain located within a putative pleckstrin homology domain. The kinases bound RhoA, RhoB, and RhoC but not Rac1 and Cdc42. The Rho-binding domain comprises about 30 amino acids. Mutations within this domain caused partial or complete loss of Rho binding. The morphological effects of ROK alpha were investigated by microinjecting HeLa cells with DNA constructs encoding various forms of ROK alpha. Full-length ROK alpha promoted formation of stress fibers and focal adhesion complexes, consistent with its being an effector of RhoA. ROK alpha truncated at the C terminus promoted this formation and also extensive condensation of actin microfilaments and nuclear disruption. The proteins exhibited protein kinase activity which was required for stress fiber formation; the kinase-dead ROK alpha K112A and N-terminally truncated mutants showed no such promotion. The latter mutant instead induced disassembly of stress fibers and focal adhesion complexes, accompanied by cell spreading. These effects were mediated by the C-terminal region containing Rho-binding, cysteine/histidine-rich, and pleckstrin homology domains. Thus, the multidomained ROK alpha appears to be involved in reorganization of the cytoskeleton, with the N and C termini acting as positive and negative regulators, respectively, of the kinase domain whose activity is crucial for formation of stress fibers and focal adhesion complexes.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                17 May 1999
                : 145
                : 4
                : 851-863
                Affiliations
                [* ]Department of Anatomy and Cell Biology, State University of New York, Health Science Center, Syracuse, New York 13210; []Department of Molecular Medicine, Cornell University, Ithaca, New York 14853; and [§ ]Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
                Author notes

                Address correspondence to Christopher E. Turner, Ph.D., Department of Anatomy and Cell Biology, SUNY Health Science Center, 750 East Adams Street, Syracuse, NY 13210. Tel.: (315) 464-8598. Fax: (315) 464-8535. E-mail: turnerc@ 123456vax.cs.hscsyr.edu

                Article
                10.1083/jcb.145.4.851
                2133183
                10330411
                fe834889-6c06-477a-a0eb-dbbc9f47343a
                Copyright @ 1999
                History
                : 17 February 1999
                : 9 April 1999
                Categories
                Regular Articles

                Cell biology
                migration,signal transduction,integrins,trafficking,vesicular transport
                Cell biology
                migration, signal transduction, integrins, trafficking, vesicular transport

                Comments

                Comment on this article