25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Conformational dynamics of the Hop1 HORMA domain reveal a common mechanism with the spindle checkpoint protein Mad2

      research-article
      , ,
      Nucleic Acids Research
      Oxford University Press

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The HORMA domain is a highly conserved protein–protein interaction module found in eukaryotic signaling proteins including the spindle assembly checkpoint protein Mad2 and the meiotic HORMAD proteins. HORMA domain proteins interact with short ‘closure motifs’ in partner proteins by wrapping their C-terminal ‘safety belt’ region entirely around these motifs, forming topologically-closed complexes. Closure motif binding and release requires large-scale conformational changes in the HORMA domain, but such changes have only been observed in Mad2. Here, we show that Saccharomyces cerevisiae Hop1, a master regulator of meiotic recombination, possesses conformational dynamics similar to Mad2. We identify closure motifs in the Hop1 binding partner Red1 and in Hop1 itself, revealing that HORMA domain–closure motif interactions underlie both Hop1’s initial recruitment to the chromosome axis and its self-assembly on the axis. We further show that Hop1 adopts two distinct folded states in solution, one corresponding to the previously-observed ‘closed’ conformation, and a second more extended state in which the safety belt region has disengaged from the HORMA domain core. These data reveal strong mechanistic similarities between meiotic HORMADs and Mad2, and provide a mechanistic basis for understanding both meiotic chromosome axis assembly and its remodeling by the AAA+ ATPase Pch2/TRIP13.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          The Molecular Biology of Spindle Assembly Checkpoint Signaling Dynamics.

          The spindle assembly checkpoint is a safeguard mechanism that coordinates cell-cycle progression during mitosis with the state of chromosome attachment to the mitotic spindle. The checkpoint prevents mitotic cells from exiting mitosis in the presence of unattached or improperly attached chromosomes, thus avoiding whole-chromosome gains or losses and their detrimental effects on cell physiology. Here, I review a considerable body of recent progress in the elucidation of the molecular mechanisms underlying checkpoint signaling, and identify a number of unresolved questions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recombination, Pairing, and Synapsis of Homologs during Meiosis.

            Recombination is a prominent feature of meiosis in which it plays an important role in increasing genetic diversity during inheritance. Additionally, in most organisms, recombination also plays mechanical roles in chromosomal processes, most notably to mediate pairing of homologous chromosomes during prophase and, ultimately, to ensure regular segregation of homologous chromosomes when they separate at the first meiotic division. Recombinational interactions are also subject to important spatial patterning at both early and late stages. Recombination-mediated processes occur in physical and functional linkage with meiotic axial chromosome structure, with interplay in both directions, before, during, and after formation and dissolution of the synaptonemal complex (SC), a highly conserved meiosis-specific structure that links homolog axes along their lengths. These diverse processes also are integrated with recombination-independent interactions between homologous chromosomes, nonhomology-based chromosome couplings/clusterings, and diverse types of chromosome movement. This review provides an overview of these diverse processes and their interrelationships.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis.

              A multisubunit complex, called cohesin, containing Smc1p, Smc3p, Scc1p, and Scc3p, is required for sister chromatid cohesion in mitotic cells. We show here that Smc3p and a meiotic version of Scc1p called Rec8p are required for cohesion between sister chromatids, for formation of axial elements, for reciprocal recombination, and for preventing hyperresection of double-strand breaks during meiosis. Both Rec8p and Smc3p colocalize with chromosome cores independently of synapsis during prophase I and largely disappear from chromosome arms after pachytene but persist in the neighborhood of centromeres until the onset of anaphase II. The eukaryotic cell's cohesion apparatus is required both for the repair of recombinogenic lesions and for chromosome segregation and therefore appears to lie at the heart of the meiotic process.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                09 January 2018
                25 November 2017
                25 November 2017
                : 46
                : 1
                : 279-292
                Affiliations
                Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA
                Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
                Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
                Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
                Author notes
                To whom correspondence should be addressed. Tel: +1 858 534 7267; Fax: +1 858 534 7750; Email: kcorbett@ 123456ucsd.edu
                Author information
                http://orcid.org/0000-0001-5854-2388
                Article
                gkx1196
                10.1093/nar/gkx1196
                5758881
                29186573
                fe90488c-3766-487c-90ce-b85d012b5371
                © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 16 November 2017
                : 13 November 2017
                : 03 August 2017
                Page count
                Pages: 14
                Categories
                Genome Integrity, Repair and Replication

                Genetics
                Genetics

                Comments

                Comment on this article