0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Community coalescence: an eco-evolutionary perspective

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Community coalescence, the mixing of different communities, is widespread throughout microbial ecology. Coalescence can result in approximately equal contributions from the founding communities or dominance of one community over another. These different outcomes have ramifications for community structure and function in natural communities, and the use of microbial communities in biotechnology and medicine. However, we have little understanding of when a particular outcome might be expected. Here, we integrate existing theory and data to speculate on how a crucial characteristic of microbial communities—the type of species interaction that dominates the community—might affect the outcome of microbial community coalescence. Given the often comparable timescales of microbial ecology and microevolution, we explicitly consider ecological and evolutionary dynamics, and their interplay, in determining coalescence outcomes.

          This article is part of the theme issue ‘Conceptual challenges in microbial community ecology’.

          Related collections

          Most cited references 4

          • Record: found
          • Abstract: not found
          • Article: not found

          Environmental heterogeneity, species diversity and co-existence at different spatial scales

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The enforcement of cooperation by policing.

            Policing is regarded as an important mechanism for maintaining cooperation in human and animal social groups. A simple model providing a theoretical overview of the coevolution of policing and cooperation has been analyzed by Frank (1995, 1996b, 2003, 2009), and this suggests that policing will evolve to fully suppress cheating within social groups when relatedness is low. Here, we relax some of the assumptions made by Frank, and investigate the consequences for policing and cooperation. First, we address the implicit assumption that the individual cost of investment into policing is reduced when selfishness dominates. We find that relaxing this assumption leads to policing being favored only at intermediate relatedness. Second, we address the assumption that policing fully recovers the loss of fitness incurred by the group owing to selfishness. We find that relaxing this assumption prohibits the evolution of full policing. Finally, we consider the impact of demography on the coevolution of policing and cooperation, in particular the role for kin competition to disfavor the evolution of policing, using both a heuristic "open" model and a "closed" island model. We find that large groups and increased kin competition disfavor policing, and that policing is maintained more readily than it invades. Policing may be harder to evolve than previously thought.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nestedness versus modularity in ecological networks: two sides of the same coin?

              1. Understanding the structure of ecological networks is a crucial task for interpreting community and ecosystem responses to global change. 2. Despite the recent interest in this subject, almost all studies have focused exclusively on one specific network property. The question remains as to what extent different network properties are related and how understanding this relationship can advance our comprehension of the mechanisms behind these patterns. 3. Here, we analysed the relationship between nestedness and modularity, two frequently studied network properties, for a large data set of 95 ecological communities including both plant-animal mutualistic and host-parasite networks. 4. We found that the correlation between nestedness and modularity for a population of random matrices generated from the real communities decreases significantly in magnitude and sign with increasing connectance independent of the network type. At low connectivities, networks that are highly nested also tend to be highly modular; the reverse happens at high connectivities. 5. The above result is qualitatively robust when different null models are used to infer network structure, but, at a finer scale, quantitative differences exist. We observed an important interaction between the network structure pattern and the null model used to detect it. 6. A better understanding of the relationship between nestedness and modularity is important given their potential implications on the dynamics and stability of ecological communities.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Philosophical Transactions of the Royal Society B: Biological Sciences
                Phil. Trans. R. Soc. B
                The Royal Society
                0962-8436
                1471-2970
                May 11 2020
                March 23 2020
                May 11 2020
                : 375
                : 1798
                : 20190252
                Affiliations
                [1 ]College of Life and Environmental Sciences, Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9EZ, UK
                Article
                10.1098/rstb.2019.0252
                fe91ee43-961a-4f12-9bf4-ed74189f3beb
                © 2020

                Comments

                Comment on this article