1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New species of Pseudosperma (Agaricales, Inocybaceae) from Pakistan revealed by morphology and multi-locus phylogenetic reconstruction

      , , ,

      MycoKeys

      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During fungal surveys between 2012 and 2014 in pine-dominated forests of the western Himalayas in Pakistan, several collections of Pseudosperma (Agaricales, Inocybaceae) were made. These were documented, based on morphological and molecular data. During this work, three new species came to light, which are here formally described as Pseudosperma brunneoumbonatum, P. pinophilum and P. triacicularis. These species belong in the genus Pseudosperma fide Matheny et al. (2019) = Pseudosperma clade fide Matheny (2005) = Inocybe sect. Rimosae s.s. fide Larsson et al. (2009). Macro- and micro-morphological descriptions, illustrations and molecular phylogenetic reconstructions of the studied taxa are provided. The new species are differentiated from their close relatives by basidiospore size and colouration of basidiomata. Molecular phylogenetic relationships are inferred using ITS (ITS1–5.8S–ITS2), nrLSU and mtSSU sequence data. All three newly-described taxa likely share an ectomycorrhizal association with trees in the genus Pinus. In addition, five names are recombined in Inosperma, Mallocybe and Pseudosperma. These are Inosperma vinaceobrunneum, Mallocybe erratum, Pseudosperma alboflavellum, Pseudosperma friabile and Pseudosperma neglectum.

          Related collections

          Most cited references 35

          • Record: found
          • Abstract: not found
          • Article: not found

          The fungal dimension of biodiversity: magnitude, significance, and conservation

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe; Agaricales).

             P. Matheny (2005)
            Approximately 3000 bp across 84 taxa have been analyzed for variable regions of RPB1, RPB2, and nLSU-rDNA to infer phylogenetic relationships in the large ectomycorrhizal mushroom genus Inocybe (Agaricales; Basidiomycota). This study represents the first effort to combine variable regions of RPB1 and RPB2 with nLSU-rDNA for low-level phylogenetic studies in mushroom-forming fungi. Combination of the three loci increases non-parametric bootstrap support, Bayesian posterior probabilities, and resolution for numerous clades compared to separate gene analyses. These data suggest the evolution of at least five major lineages in Inocybe-the Inocybe clade, the Mallocybe clade, the Auritella clade, the Inosperma clade, and the Pseudosperma clade. Additionally, many clades nested within each major lineage are strongly supported. These results also suggest the family Crepiodataceae sensu stricto is sister to Inocybe. Recognition of Inocybe at the family level, the Inocybaceae, is recommended.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Present and future Köppen-Geiger climate classification maps at 1-km resolution

              We present new global maps of the Köppen-Geiger climate classification at an unprecedented 1-km resolution for the present-day (1980–2016) and for projected future conditions (2071–2100) under climate change. The present-day map is derived from an ensemble of four high-resolution, topographically-corrected climatic maps. The future map is derived from an ensemble of 32 climate model projections (scenario RCP8.5), by superimposing the projected climate change anomaly on the baseline high-resolution climatic maps. For both time periods we calculate confidence levels from the ensemble spread, providing valuable indications of the reliability of the classifications. The new maps exhibit a higher classification accuracy and substantially more detail than previous maps, particularly in regions with sharp spatial or elevation gradients. We anticipate the new maps will be useful for numerous applications, including species and vegetation distribution modeling. The new maps including the associated confidence maps are freely available via www.gloh2o.org/koppen.
                Bookmark

                Author and article information

                Journal
                MycoKeys
                MC
                Pensoft Publishers
                1314-4049
                1314-4057
                July 09 2020
                July 09 2020
                : 69
                : 1-31
                Article
                10.3897/mycokeys.69.33563
                © 2020

                Comments

                Comment on this article