25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Role of stellar physics in regulating the critical steps for life

      ,
      International Journal of Astrobiology
      Cambridge University Press (CUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We use the critical step model to study the major transitions in evolution on Earth. We find that a total of five steps represents the most plausible estimate, in agreement with previous studies, and use the fossil record to identify the potential candidates. We apply the model to Earth-analogs around stars of different masses by incorporating the constraints on habitability set by stellar physics including the habitable zone lifetime, availability of ultraviolet radiation for prebiotic chemistry, and atmospheric escape. The critical step model suggests that the habitability of Earth-analogs around M-dwarfs is significantly suppressed. The total number of stars with planets containing detectable biosignatures of microbial life is expected to be highest for K-dwarfs. In contrast, we find that the corresponding value for intelligent life (technosignatures) should be highest for solar-mass stars. Thus, our work may assist in the identification of suitable targets in the search for biosignatures and technosignatures.

          Related collections

          Most cited references264

          • Record: found
          • Abstract: found
          • Article: not found

          Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets.

          The petrology record on the Moon suggests that a cataclysmic spike in the cratering rate occurred approximately 700 million years after the planets formed; this event is known as the Late Heavy Bombardment (LHB). Planetary formation theories cannot naturally account for an intense period of planetesimal bombardment so late in Solar System history. Several models have been proposed to explain a late impact spike, but none of them has been set within a self-consistent framework of Solar System evolution. Here we propose that the LHB was triggered by the rapid migration of the giant planets, which occurred after a long quiescent period. During this burst of migration, the planetesimal disk outside the orbits of the planets was destabilized, causing a sudden massive delivery of planetesimals to the inner Solar System. The asteroid belt was also strongly perturbed, with these objects supplying a significant fraction of the LHB impactors in accordance with recent geochemical evidence. Our model not only naturally explains the LHB, but also reproduces the observational constraints of the outer Solar System.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Approaching a state shift in Earth's biosphere.

            Localized ecological systems are known to shift abruptly and irreversibly from one state to another when they are forced across critical thresholds. Here we review evidence that the global ecosystem as a whole can react in the same way and is approaching a planetary-scale critical transition as a result of human influence. The plausibility of a planetary-scale 'tipping point' highlights the need to improve biological forecasting by detecting early warning signs of critical transitions on global as well as local scales, and by detecting feedbacks that promote such transitions. It is also necessary to address root causes of how humans are forcing biological changes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A Universal Stellar Initial Mass Function? A Critical Look at Variations

                Bookmark

                Author and article information

                Journal
                applab
                International Journal of Astrobiology
                International Journal of Astrobiology
                Cambridge University Press (CUP)
                1473-5504
                1475-3006
                March 27 2019
                : 1-20
                Article
                10.1017/S1473550419000016
                fea5abda-b00f-4add-8300-a57e45588da3
                © 2019

                https://www.cambridge.org/core/terms

                History

                Comments

                Comment on this article