115
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spectral redemption: clustering sparse networks

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spectral algorithms are classic approaches to clustering and community detection in networks. However, for sparse networks the standard versions of these algorithms are suboptimal, in some cases completely failing to detect communities even when other algorithms such as belief propagation can do so. Here we introduce a new class of spectral algorithms based on a non-backtracking walk on the directed edges of the graph. The spectrum of this operator is much better-behaved than that of the adjacency matrix or other commonly used matrices, maintaining a strong separation between the bulk eigenvalues and the eigenvalues relevant to community structure even in the sparse case. We show that our algorithm is optimal for graphs generated by the stochastic block model, detecting communities all the way down to the theoretical limit. We also show the spectrum of the non-backtracking operator for some real-world networks, illustrating its advantages over traditional spectral clustering.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Community structure in social and biological networks

          A number of recent studies have focused on the statistical properties of networked systems such as social networks and the World-Wide Web. Researchers have concentrated particularly on a few properties which seem to be common to many networks: the small-world property, power-law degree distributions, and network transitivity. In this paper, we highlight another property which is found in many networks, the property of community structure, in which network nodes are joined together in tightly-knit groups between which there are only looser connections. We propose a new method for detecting such communities, built around the idea of using centrality indices to find community boundaries. We test our method on computer generated and real-world graphs whose community structure is already known, and find that it detects this known structure with high sensitivity and reliability. We also apply the method to two networks whose community structure is not well-known - a collaboration network and a food web - and find that it detects significant and informative community divisions in both cases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Cooperative Game Theory Approaches for Network Partitioning

            The paper is devoted to game-theoretic methods for community detection in networks. The traditional methods for detecting community structure are based on selecting denser subgraphs inside the network. Here we propose to use the methods of cooperative game theory that highlight not only the link density but also the mechanisms of cluster formation. Specifically, we suggest two approaches from cooperative game theory: the first approach is based on the Myerson value, whereas the second approach is based on hedonic games. Both approaches allow to detect clusters with various resolution. However, the tuning of the resolution parameter in the hedonic games approach is particularly intuitive. Furthermore, the modularity based approach and its generalizations can be viewed as particular cases of the hedonic games.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations

                Bookmark

                Author and article information

                Journal
                24 June 2013
                2013-08-23
                Article
                10.1073/pnas.1312486110
                3876200
                24277835
                1306.5550
                feb6e132-0b6a-4a09-baa9-19b89541d903

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Proceedings of the National Academy of Sciences 110, no. 52 (2013): 20935-20940
                11 pages, 6 figures. Clarified to what extent our claims are rigorous, and to what extent they are conjectures; also added an interpretation of the eigenvectors of the 2n-dimensional version of the non-backtracking matrix
                cs.SI cond-mat.stat-mech physics.soc-ph stat.ML

                Comments

                Comment on this article