42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Posttranslational Modifications of Tubulin and Cilia

      , , ,
      Cold Spring Harbor Perspectives in Biology
      Cold Spring Harbor Laboratory

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d56243e125">Tubulin undergoes several highly conserved posttranslational modifications (PTMs) including acetylation, detyrosination, glutamylation, and glycylation. These PTMs accumulate on a subset of microtubules that are long-lived, including those in the basal bodies and axonemes. Tubulin PTMs are distributed nonuniformly. In the outer doublet microtubules of the axoneme, the B-tubules are highly enriched in the detyrosinated, polyglutamylated, and polyglycylated tubulin, whereas the A-tubules contain mostly unmodified tubulin. The nonuniform patterns of tubulin PTMs may functionalize microtubules in a position-dependent manner. Recent studies indicate that tubulin PTMs contribute to the assembly, disassembly, maintenance, and motility of cilia. In particular, tubulin glutamylation has emerged as a key PTM that affects ciliary motility through regulation of axonemal dynein arms and controls the stability and length of the axoneme. </p><p class="first" id="d56243e128">Posttranslational modifications accumulate on certain microtubules in cilia (e.g., the B-tubules of the axoneme) but not on others (e.g., the A-tubules). These and other nonuniform patterns may have functional consequences. </p>

          Related collections

          Most cited references99

          • Record: found
          • Abstract: found
          • Article: not found

          Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally.

          Posttranslational modifications play important roles in regulating protein structure and function. Histone deacetylase 6 (HDAC6) is a mostly cytoplasmic class II HDAC, which has a unique structure with two catalytic domains and a domain binding ubiquitin with high affinity. This enzyme was recently identified as a multisubstrate protein deacetylase that can act on acetylated histone tails, alpha-tubulin and Hsp90. To investigate the in vivo functions of HDAC6 and the relevance of tubulin acetylation/deacetylation, we targeted the HDAC6 gene by homologous recombination in embryonic stem cells and generated knockout mice. HDAC6-deficient mice are viable and fertile and show hyperacetylated tubulin in most tissues. The highest level of expression of HDAC6 is seen in the testis, yet development and function of this organ are normal in the absence of HDAC6. Likewise, lymphoid development is normal, but the immune response is moderately affected. Furthermore, the lack of HDAC6 results in a small increase in cancellous bone mineral density, indicating that this deacetylase plays a minor role in bone biology. HDAC6-deficient mouse embryonic fibroblasts show apparently normal microtubule organization and stability and also show increased Hsp90 acetylation correlating with impaired Hsp90 function. Collectively, these data demonstrate that mice survive well without HDAC6 and that tubulin hyperacetylation is not detrimental to normal mammalian development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MEC-17 is an α-tubulin acetyltransferase

            SUMMARY In most eukaryotic cells, subsets of microtubules are adapted for specific functions by post-translational modifications (PTMs) of tubulin subunits. Acetylation of the ε-amino group of K40 on α-tubulin is a conserved PTM on the luminal side of microtubules1 that was discovered in the flagella of Chlamydomonas reinhardtii 2,3. Studies on the significance of microtubule acetylation have been limited by the undefined status of the α-tubulin acetyltransferase. Here, we show that MEC-17, a protein related to the Gcn5 histone acetyltransferases4 and required for the function of touch receptor neurons in C. elegans 5,6, acts as a K40-specific acetyltransferase for α-tubulin. In vitro, MEC-17 exclusively acetylates K40 of α-tubulin. Disruption of the Tetrahymena MEC-17 gene phenocopies the K40R α-tubulin mutation and makes microtubules more labile. Depletion of MEC-17 in zebrafish produces phenotypes consistent with neuromuscular defects. In C. elegans, MEC-17 and its paralog W06B11.1 are redundantly required for acetylation of MEC-12 α-tubulin, and contribute to the function of touch receptor neurons partly via MEC-12 acetylation and partly via another function, possibly by acetylating another protein. In summary, we identify MEC-17 as an enzyme that acetylates the K40 residue of α-tubulin, the only PTM known to occur on the luminal surface of microtubules.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Post-translational modifications of tubulin: pathways to functional diversity of microtubules.

              Tubulin and microtubules are subject to a remarkable number of post-translational modifications. Understanding the roles these modifications play in determining the functions and properties of microtubules has presented a major challenge that is only now being met. Many of these modifications are found concurrently, leading to considerable diversity in cellular microtubules, which varies with development, differentiation, cell compartment, and cell cycle. We now know that post-translational modifications of tubulin affect, not only the dynamics of the microtubules, but also their organization and interaction with other cellular components. Many early suggestions of how post-translational modifications affect microtubules have been replaced with new ideas and even new modifications as our understanding of cellular microtubule diversity comes into focus.
                Bookmark

                Author and article information

                Journal
                Cold Spring Harbor Perspectives in Biology
                Cold Spring Harb Perspect Biol
                Cold Spring Harbor Laboratory
                1943-0264
                June 01 2017
                June 2017
                December 21 2016
                : 9
                : 6
                : a028159
                Article
                10.1101/cshperspect.a028159
                5453388
                28003186
                feb8b17c-7da2-4273-9cb1-468ea39bbf13
                © 2016
                History

                Comments

                Comment on this article