16
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Amatuximab and novel agents targeting mesothelin for solid tumors

      review-article

      ,

      OncoTargets and therapy

      Dove Medical Press

      amatuximab, monoclonal antibody, mesothelin, antigen, mesothelioma, target therapy

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mesothelin (MSLN) is considered a promising target for cancer therapy. Originally extracted in 1992 after the immunization of mice with a human ovarian cancer (OC) cell line and cloned in 1996, MSLN seems to be involved in cell adhesion and metastasis. MSLN is prevalent in mesothelia tissues but is expressed in several human cancers, such as OC, pancreatic cancer, mesothelioma, and lung cancer. Amatuximab (MORAb-009) is a mouse-human chimeric monoclonal antibody with a selective affinity for MSLN. The principal mechanism of action comprises inhibition of binding of MSLN with the antigen CA125/MUC16. The highest phase of development is actually a Phase II trial (MORAb-009-201, Europe). In this review, we describe the mechanism of action of amatuximab and other MSLN-targeting novel drugs, along with a discussion about the expected efficacy, safety, and toxicity of this promising group of agents and implications for future research and clinical practice.

          Related collections

          Most cited references 96

          • Record: found
          • Abstract: found
          • Article: not found

          Safety and survival with GVAX pancreas prime and Listeria Monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer.

          GVAX pancreas, granulocyte-macrophage colony-stimulating factor-secreting allogeneic pancreatic tumor cells, induces T-cell immunity to cancer antigens, including mesothelin. GVAX is administered with low-dose cyclophosphamide (Cy) to inhibit regulatory T cells. CRS-207, live-attenuated Listeria monocytogenes-expressing mesothelin, induces innate and adaptive immunity. On the basis of preclinical synergy, we tested prime/boost vaccination with GVAX and CRS-207 in pancreatic adenocarcinoma. Previously treated patients with metastatic pancreatic adenocarcinoma were randomly assigned at a ratio of 2:1 to two doses of Cy/GVAX followed by four doses of CRS-207 (arm A) or six doses of Cy/GVAX (arm B) every 3 weeks. Stable patients were offered additional courses. The primary end point was overall survival (OS) between arms. Secondary end points were safety and clinical response. A total of 90 patients were treated (arm A, n = 61; arm B, n = 29); 97% had received prior chemotherapy; 51% had received ≥ two regimens for metastatic disease. Mean number of doses (± standard deviation) administered in arms A and B were 5.5 ± 4.5 and 3.7 ± 2.2, respectively. The most frequent grade 3 to 4 related toxicities were transient fevers, lymphopenia, elevated liver enzymes, and fatigue. OS was 6.1 months in arm A versus 3.9 months in arm B (hazard ratio [HR], 0.59; P = .02). In a prespecified per-protocol analysis of patients who received at least three doses (two doses of Cy/GVAX plus one of CRS-207 or three of Cy/GVAX), OS was 9.7 versus 4.6 months (arm A v B; HR, 0.53; P = .02). Enhanced mesothelin-specific CD8 T-cell responses were associated with longer OS, regardless of treatment arm. Heterologous prime/boost with Cy/GVAX and CRS-207 extended survival for patients with pancreatic cancer, with minimal toxicity. © 2015 by American Society of Clinical Oncology.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Exclusion of Kaposi Sarcoma From Analysis of Cancer Burden—Reply

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE).

               C Rosty,  E Jaffee,  R Hruban (2001)
              Effective new markers of pancreatic carcinoma are urgently needed. In a previous analysis of gene expression in pancreatic adenocarcinoma using serial analysis of gene expression (SAGE), we found that the tag for the mesothelin mRNA transcript was present in seven of eight SAGE libraries derived from pancreatic carcinomas but not in the two SAGE libraries derived from normal pancreatic duct epithelial cells. In this study, we evaluate the potential utility of mesothelin as a tumor marker for pancreatic adenocarcinoma. Mesothelin mRNA expression was evaluated in pancreatic adenocarcinomas using reverse-transcription PCR (RT-PCR) and in situ hybridization, whereas mesothelin protein expression was evaluated by immunohistochemistry. Using an online SAGE database (http://www.ncbi.nlm.gov/SAGE), we found the tag for mesothelin to be consistently present in the mesothelioma, ovarian cancer, and pancreatic cancer libraries but not in normal pancreas libraries. Mesothelin mRNA expression was confirmed by in situ hybridization in 4 of 4 resected primary pancreatic adenocarcinomas and by RT-PCR in 18 of 20 pancreatic cancer cell lines, whereas mesothelin protein expression was confirmed by immunohistochemistry in all 60 resected primary pancreatic adenocarcinomas studied. The adjacent normal pancreas in these 60 cases did not label, or at most only rare benign pancreatic ducts showed weak labeling for mesothelin. Mesothelin is a new marker for pancreatic adenocarcinoma identified by gene expression analysis. Mesothelin overexpression in pancreatic adenocarcinoma has potential diagnostic, imaging, and therapeutic implications.
                Bookmark

                Author and article information

                Journal
                Onco Targets Ther
                Onco Targets Ther
                OncoTargets and Therapy
                OncoTargets and therapy
                Dove Medical Press
                1178-6930
                2017
                08 November 2017
                : 10
                : 5337-5353
                Affiliations
                Pharmacy Unit, Directorate Department, CRO Aviano-IRCCS National Cancer Institute, Aviano, Italy
                Author notes
                Correspondence: Paolo Baldo, Pharmacy Unit, Directorate Department, CRO Aviano-IRCCS National Cancer Institute, Via F. Gallini, 2, Aviano (PN) Italy, Tel +39 0434 659221, Fax +39 0434 659743, Email pbaldo@ 123456cro.it
                Article
                ott-10-5337
                10.2147/OTT.S145105
                5687483
                © 2017 Baldo and Cecco. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Review

                Oncology & Radiotherapy

                amatuximab, monoclonal antibody, mesothelin, antigen, mesothelioma, target therapy

                Comments

                Comment on this article