3
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Susceptible-Infected-Removed Mathematical Model under Deep Learning in Hospital Infection Control of Novel Coronavirus Pneumonia

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          This research aimed to explore the application of a mathematical model based on deep learning in hospital infection control of novel coronavirus (COVID-19) pneumonia.

          Methods

          First, the epidemic data of Beijing, China, were utilized to make a definite susceptible-infected-removed (SIR) model fitting to determine the estimated value of the COVID-19 removal intensity β, which was then used to do a determined SIR model and a stochastic SIR model fitting for the hospital. In addition, the reasonable β and γ estimates of the hospital were determined, and the spread of the epidemic in hospital was simulated, to discuss the impact of basal reproductive number changes, isolation, vaccination, and so forth on COVID-19.

          Results

          There was a certain gap between the fitting of SIR to the remover and the actual data. The fitting of the number of infections was accurate. The growth rate of the number of infections decreased after measures, such as isolation, were taken. The effect of herd immunity was achieved after the overall immunity reached 70.9%.

          Conclusion

          The SIR model based on deep learning and the stochastic SIR fitting model were accurate in judging the development trend of the epidemic, which can provide basis and reference for hospital epidemic infection control.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          A SIR model assumption for the spread of COVID-19 in different communities

          In this paper, we study the effectiveness of the modelling approach on the pandemic due to the spreading of the novel COVID-19 disease and develop a susceptible-infected-removed (SIR) model that provides a theoretical framework to investigate its spread within a community. Here, the model is based upon the well-known susceptible-infected-removed (SIR) model with the difference that a total population is not defined or kept constant per se and the number of susceptible individuals does not decline monotonically. To the contrary, as we show herein, it can be increased in surge periods! In particular, we investigate the time evolution of different populations and monitor diverse significant parameters for the spread of the disease in various communities, represented by countries and the state of Texas in the USA. The SIR model can provide us with insights and predictions of the spread of the virus in communities that the recorded data alone cannot. Our work shows the importance of modelling the spread of COVID-19 by the SIR model that we propose here, as it can help to assess the impact of the disease by offering valuable predictions. Our analysis takes into account data from January to June, 2020, the period that contains the data before and during the implementation of strict and control measures. We propose predictions on various parameters related to the spread of COVID-19 and on the number of susceptible, infected and removed populations until September 2020. By comparing the recorded data with the data from our modelling approaches, we deduce that the spread of COVID-19 can be under control in all communities considered, if proper restrictions and strong policies are implemented to control the infection rates early from the spread of the disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Interferon-gamma (IFN-γ): Exploring its implications in infectious diseases

            A key player in driving cellular immunity, IFN-γ is capable of orchestrating numerous protective functions to heighten immune responses in infections and cancers. It can exhibit its immunomodulatory effects by enhancing antigen processing and presentation, increasing leukocyte trafficking, inducing an anti-viral state, boosting the anti-microbial functions and affecting cellular proliferation and apoptosis. A complex interplay between immune cell activity and IFN-γ through coordinated integration of signals from other pathways involving cytokines and Pattern Recognition Receptors (PRRs) such as Interleukin (IL)-4, TNF-α, Lipopolysaccharide (LPS), Type-I Interferons (IFNS) etc. leads to initiation of a cascade of pro-inflammatory responses. Microarray data has unraveled numerous genes whose transcriptional regulation is influenced by IFN-γ. Consequently, IFN-γ stimulated cells display altered expression of many such target genes which mediate its downstream effector functions. The importance of IFN-γ is further reinforced by the fact that mice possessing disruptions in the IFN-γ gene or its receptor develop extreme susceptibility to infectious diseases and rapidly succumb to them. In this review, we attempt to elucidate the biological functions and physiological importance of this versatile cytokine. The functional implications of its biological activity in several infectious diseases and autoimmune pathologies are also discussed. As a counter strategy, many virulent pathogenic species have devised ways to thwart IFN-γ endowed immune-protection. Thus, IFN-γ mediated host-pathogen interactions are critical for our understanding of disease mechanisms and these aspects also manifest enormous therapeutic importance for the annulment of various infections and autoimmune conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              COVID-19 vaccines: The status and perspectives in delivery points of view

              Due to the high prevalence and long incubation periods often without symptoms, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected millions of individuals globally, causing the coronavirus disease 2019 (COVID-19) pandemic. Even with the recent approval of the anti-viral drug, remdesivir, and Emergency Use Authorization of monoclonal antibodies against S protein, bamlanivimab and casirimab/imdevimab, efficient and safe COVID-19 vaccines are still desperately demanded not only to prevent its spread but also to restore social and economic activities via generating mass immunization. Recent Emergency Use Authorization of Pfizer and BioNTech’s mRNA vaccine may provide a pathway forward, but monitoring of long-term immunity is still required, and diverse candidates are still under development. As the knowledge of SARS-CoV-2 pathogenesis and interactions with the immune system continues to evolve, a variety of drug candidates are under investigation and in clinical trials. Potential vaccines and therapeutics against COVID-19 include repurposed drugs, monoclonal antibodies, antiviral and antigenic proteins, peptides, and genetically engineered viruses. This paper reviews virology and immunology of SARS-CoV-2, alternative therapies for COVID-19 to vaccination, principles and design considerations in COVID-19 vaccine development, and the promises and roles of vaccine carriers in addressing the unique immunopathological challenges presented by the disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Healthc Eng
                J Healthc Eng
                JHE
                Journal of Healthcare Engineering
                Hindawi
                2040-2295
                2040-2309
                2021
                27 October 2021
                : 2021
                : 1535046
                Affiliations
                1First Department of Health Care, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
                2Department of Disease Control and Prevention, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
                3Department of Rehabilitation Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
                Author notes

                Academic Editor: Enas Abdulhay

                Author information
                https://orcid.org/0000-0002-8077-9071
                https://orcid.org/0000-0002-1492-7048
                https://orcid.org/0000-0001-7499-179X
                https://orcid.org/0000-0003-0093-2126
                https://orcid.org/0000-0002-7897-8370
                Article
                10.1155/2021/1535046
                8566049
                feccaddd-20d2-4cca-baf9-550429d0536d
                Copyright © 2021 Ting Liu et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 August 2021
                : 25 September 2021
                : 29 September 2021
                Categories
                Research Article

                Comments

                Comment on this article