71
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cholera- and Anthrax-Like Toxins Are among Several New ADP-Ribosyltransferases

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chelt, a cholera-like toxin from Vibrio cholerae, and Certhrax, an anthrax-like toxin from Bacillus cereus, are among six new bacterial protein toxins we identified and characterized using in silico and cell-based techniques. We also uncovered medically relevant toxins from Mycobacterium avium and Enterococcus faecalis. We found agriculturally relevant toxins in Photorhabdus luminescens and Vibrio splendidus. These toxins belong to the ADP-ribosyltransferase family that has conserved structure despite low sequence identity. Therefore, our search for new toxins combined fold recognition with rules for filtering sequences – including a primary sequence pattern – to reduce reliance on sequence identity and identify toxins using structure. We used computers to build models and analyzed each new toxin to understand features including: structure, secretion, cell entry, activation, NAD + substrate binding, intracellular target binding and the reaction mechanism. We confirmed activity using a yeast growth test. In this era where an expanding protein structure library complements abundant protein sequence data – and we need high-throughput validation – our approach provides insight into the newest toxin ADP-ribosyltransferases.

          Author Summary

          Computer tools helped us uncover and understand potent protein toxins that empower bacterial pathogens against plants, animals and man. These toxins are potential drug targets and researchers can use them to make vaccines. New toxin knowledge aids the long-term goal of finding alternatives to antibiotics, to which pathogens are becoming more resistant. The toxins share similar structure despite low sequence identity, so our search links sequence and structure features. We present a ranked list and computational characterization of six new toxins combined with cell-based tests.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: found
          • Article: not found

          MRBAYES: Bayesian inference of phylogenetic trees.

          The program MRBAYES performs Bayesian inference of phylogeny using a variant of Markov chain Monte Carlo. MRBAYES, including the source code, documentation, sample data files, and an executable, is available at http://brahms.biology.rochester.edu/software.html.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions.

            The LIGPLOT program automatically generates schematic 2-D representations of protein-ligand complexes from standard Protein Data Bank file input. The output is a colour, or black-and-white, PostScript file giving a simple and informative representation of the intermolecular interactions and their strengths, including hydrogen bonds, hydrophobic interactions and atom accessibilities. The program is completely general for any ligand and can also be used to show other types of interaction in proteins and nucleic acids. It was designed to facilitate the rapid inspection of many enzyme complexes, but has found many other applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CATH--a hierarchic classification of protein domain structures.

              Protein evolution gives rise to families of structurally related proteins, within which sequence identities can be extremely low. As a result, structure-based classifications can be effective at identifying unanticipated relationships in known structures and in optimal cases function can also be assigned. The ever increasing number of known protein structures is too large to classify all proteins manually, therefore, automatic methods are needed for fast evaluation of protein structures. We present a semi-automatic procedure for deriving a novel hierarchical classification of protein domain structures (CATH). The four main levels of our classification are protein class (C), architecture (A), topology (T) and homologous superfamily (H). Class is the simplest level, and it essentially describes the secondary structure composition of each domain. In contrast, architecture summarises the shape revealed by the orientations of the secondary structure units, such as barrels and sandwiches. At the topology level, sequential connectivity is considered, such that members of the same architecture might have quite different topologies. When structures belonging to the same T-level have suitably high similarities combined with similar functions, the proteins are assumed to be evolutionarily related and put into the same homologous superfamily. Analysis of the structural families generated by CATH reveals the prominent features of protein structure space. We find that nearly a third of the homologous superfamilies (H-levels) belong to ten major T-levels, which we call superfolds, and furthermore that nearly two-thirds of these H-levels cluster into nine simple architectures. A database of well-characterised protein structure families, such as CATH, will facilitate the assignment of structure-function/evolution relationships to both known and newly determined protein structures.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                December 2010
                December 2010
                9 December 2010
                : 6
                : 12
                : e1001029
                Affiliations
                [1]Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
                Stockholm University, Sweden
                Author notes

                Conceived and designed the experiments: RJF ARM. Performed the experiments: RJF ZT DW. Analyzed the data: RJF ZT. Contributed reagents/materials/analysis tools: ARM. Wrote the paper: RJF ARM. Conducted the in silico analysis and wrote the manuscript: RJF. Conducted the cell-based tests: ZT. Conducted the molecular biology: DW. Edited the manuscript and provided financial support: ARM.

                Article
                10-PLCB-RA-2345R2
                10.1371/journal.pcbi.1001029
                3000352
                21170356
                fed037e3-c815-4c00-86b9-121a1675ffb2
                Fieldhouse et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 9 June 2010
                : 10 November 2010
                Page count
                Pages: 19
                Categories
                Research Article
                Biochemistry/Biomacromolecule-Ligand Interactions
                Computational Biology/Macromolecular Sequence Analysis
                Computational Biology/Protein Homology Detection
                Computational Biology/Protein Structure Prediction
                Computational Biology/Sequence Motif Analysis
                Infectious Diseases/Bacterial Infections

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article