74
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Modulators of microglial activation and polarization after intracerebral haemorrhage

      , , , ,
      Nature Reviews Neurology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Effective drug treatments for intracerebral haemorrhage (ICH) are still lacking. However, therapies that target microglial phenotype switching might soon become available for affected patients. Here, Wang and colleagues summarize key advances in understanding of microglial function after ICH, including modulators of microglial function and interactions with other cells.

          Related collections

          Most cited references203

          • Record: found
          • Abstract: found
          • Article: not found

          Guidelines for the Management of Spontaneous Intracerebral Hemorrhage: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association

          The aim of this guideline is to present current and comprehensive recommendations for the diagnosis and treatment of spontaneous intracerebral hemorrhage.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Microglial Sensome Revealed by Direct RNA Sequencing

            Microglia, the principal neuroimmune sentinels of the brain, continuously sense changes in their environment and respond to invading pathogens, toxins and cellular debris. Microglia exhibit plasticity and can assume neurotoxic or neuroprotective priming states that determine their responses to danger. We used direct RNA sequencing, without amplification or cDNA synthesis, to determine the quantitative transcriptomes of microglia of healthy adult and aged mice. We validated our findings by fluorescent dual in-situ hybridization, unbiased proteomic analysis and quantitative PCR. We report here that microglia have a distinct transcriptomic signature and express a unique cluster of transcripts encoding proteins for sensing endogenous ligands and microbes that we term the “sensome”. With aging, sensome transcripts for endogenous ligand recognition are downregulated, whereas those involved in microbe recognition and host defense are upregulated. In addition, aging is associated with an overall increase in expression of microglial genes involved in neuroprotection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microglial and macrophage polarization—new prospects for brain repair.

              The traditional view of the adult brain as a static organ has changed in the past three decades, with the emergence of evidence that it remains plastic and has some regenerative capacity after injury. In the injured brain, microglia and macrophages clear cellular debris and orchestrate neuronal restorative processes. However, activation of these cells can also hinder CNS repair and expand tissue damage. Polarization of macrophage populations toward different phenotypes at different stages of injury might account for this dual role. This Perspectives article highlights the specific roles of polarized microglial and macrophage populations in CNS repair after acute injury, and argues that therapeutic approaches targeting cerebral inflammation should shift from broad suppression of microglia and macrophages towards subtle adjustment of the balance between their phenotypes. Breakthroughs in the identification of regulatory molecules that control these phenotypic shifts could ultimately accelerate research towards curing brain disorders.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Neurology
                Nat Rev Neurol
                Springer Nature
                1759-4758
                1759-4766
                May 19 2017
                May 19 2017
                :
                :
                Article
                10.1038/nrneurol.2017.69
                5575938
                28524175
                fed2dc71-1dc4-4bc3-9b1b-8afca4e5d021
                © 2017
                History

                Comments

                Comment on this article