33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coronary Artery Disease–Associated LIPA Coding Variant rs1051338 Reduces Lysosomal Acid Lipase Levels and Activity in Lysosomes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Supplemental Digital Content is available in the text.

          Abstract

          Objective—

          Genome-wide association studies have linked variants at chromosome 10q23 with increased coronary artery disease risk. The disease-associated variants fall in LIPA, which encodes lysosomal acid lipase (LAL), the enzyme responsible for lysosomal cholesteryl ester hydrolysis. Loss-of-function mutations in LIPA result in accelerated atherosclerosis. Surprisingly, the coronary artery disease variants are associated with increased LIPA expression in some cell types. In this study, we address this apparent contradiction.

          Approach and Results—

          We investigated a coding variant rs1051338, which is in high linkage disequilibrium ( r 2=0.89) with the genome-wide association study lead–associated variant rs2246833 and causes a nonsynonymous threonine to proline change within the signal peptide of LAL. Transfection of allele-specific expression constructs showed that the risk allele results in reduced lysosomal LAL protein ( P=0.004) and activity ( P=0.005). Investigation of LAL localization and turnover showed the risk LAL protein is degraded more quickly. This mechanism was confirmed in disease-relevant macrophages from individuals homozygous for either the nonrisk or risk allele. There was no difference in LAL protein or activity in whole macrophage extracts; however, we found reduced LAL protein ( P=0.02) and activity ( P=0.026) with the risk genotype in lysosomal extracts, suggesting that the risk genotype affects lysosomal LAL activity. Inhibition of the proteasome resulted in equal amounts of lysosomal LAL protein in risk and nonrisk macrophages.

          Conclusions—

          Our findings show that the coronary artery disease–associated coding variant rs1051338 causes reduced lysosomal LAL protein and activity because of increased LAL degradation, providing a plausible causal mechanism of increased coronary artery disease risk.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Scalable web services for the PSIPRED Protein Analysis Workbench

          Here, we present the new UCL Bioinformatics Group’s PSIPRED Protein Analysis Workbench. The Workbench unites all of our previously available analysis methods into a single web-based framework. The new web portal provides a greatly streamlined user interface with a number of new features to allow users to better explore their results. We offer a number of additional services to enable computationally scalable execution of our prediction methods; these include SOAP and XML-RPC web server access and new HADOOP packages. All software and services are available via the UCL Bioinformatics Group website at http://bioinf.cs.ucl.ac.uk/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of cholesterol and lipid organization in disease.

            Membrane lipids are essential for biological functions ranging from membrane trafficking to signal transduction. The composition of lipid membranes influences their organization and properties, so it is not surprising that disorders in lipid metabolism and transport have a role in human disease. Significant recent progress has enhanced our understanding of the molecular and cellular basis of lipid-associated disorders such as Tangier disease, Niemann-Pick disease type C and atherosclerosis. These insights have also led to improved understanding of normal physiology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase.

              The lipid droplet (LD) is the major site of cholesterol storage in macrophage foam cells and is a potential therapeutic target for the treatment of atherosclerosis. Cholesterol, stored as cholesteryl esters (CEs), is liberated from this organelle and delivered to cholesterol acceptors. The current paradigm attributes all cytoplasmic CE hydrolysis to the action of neutral CE hydrolases. Here, we demonstrate an important role for lysosomes in LD CE hydrolysis in cholesterol-loaded macrophages, in addition to that mediated by neutral hydrolases. Furthermore, we demonstrate that LDs are delivered to lysosomes via autophagy, where lysosomal acid lipase (LAL) acts to hydrolyze LD CE to generate free cholesterol mainly for ABCA1-dependent efflux; this process is specifically induced upon macrophage cholesterol loading. We conclude that, in macrophage foam cells, lysosomal hydrolysis contributes to the mobilization of LD-associated cholesterol for reverse cholesterol transport. Copyright © 2011 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Arterioscler Thromb Vasc Biol
                Arterioscler. Thromb. Vasc. Biol
                ATV
                Arteriosclerosis, Thrombosis, and Vascular Biology
                Lippincott Williams & Wilkins
                1079-5642
                1524-4636
                June 2017
                24 May 2017
                : 37
                : 6
                : 1050-1057
                Affiliations
                From the Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, United Kingdom.
                Author notes
                Correspondence to Tom R. Webb, Department of Cardiovascular Sciences, University of Leicester, Cardiovascular Research Centre, Glenfield Hospital, Leicester, LE3 9QP, United Kingdom. E-mail tw126@ 123456le.ac.uk
                Article
                00011
                10.1161/ATVBAHA.116.308734
                5444428
                28279971
                fedfa3c5-de19-4624-9396-b987e45d221d
                © 2017 The Authors.

                Arteriosclerosis, Thrombosis, and Vascular Biology is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited.

                History
                : 14 November 2016
                : 27 February 2017
                Categories
                10082
                10189
                Basic Sciences
                Custom metadata
                AL
                TRUE

                coronary artery disease,genome-wide association study,lipase,macrophage

                Comments

                Comment on this article