160
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Calculating excitons, plasmons, and quasiparticles in 2D materials and van der Waals heterostructures

      2D Materials
      IOP Publishing

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references122

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Electric Field Effect in Atomically Thin Carbon Films

          We report a naturally-occurring two-dimensional material (graphene that can be viewed as a gigantic flat fullerene molecule, describe its electronic properties and demonstrate all-metallic field-effect transistor, which uniquely exhibits ballistic transport at submicron distances even at room temperature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Emerging photoluminescence in monolayer MoS2.

            Novel physical phenomena can emerge in low-dimensional nanomaterials. Bulk MoS(2), a prototypical metal dichalcogenide, is an indirect bandgap semiconductor with negligible photoluminescence. When the MoS(2) crystal is thinned to monolayer, however, a strong photoluminescence emerges, indicating an indirect to direct bandgap transition in this d-electron system. This observation shows that quantum confinement in layered d-electron materials like MoS(2) provides new opportunities for engineering the electronic structure of matter at the nanoscale.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Van der Waals heterostructures

              Research on graphene and other two-dimensional atomic crystals is intense and likely to remain one of the hottest topics in condensed matter physics and materials science for many years. Looking beyond this field, isolated atomic planes can also be reassembled into designer heterostructures made layer by layer in a precisely chosen sequence. The first - already remarkably complex - such heterostructures (referred to as 'van der Waals') have recently been fabricated and investigated revealing unusual properties and new phenomena. Here we review this emerging research area and attempt to identify future directions. With steady improvement in fabrication techniques, van der Waals heterostructures promise a new gold rush, rather than a graphene aftershock.
                Bookmark

                Author and article information

                Journal
                2D Materials
                2D Mater.
                IOP Publishing
                2053-1583
                June 01 2017
                June 16 2017
                : 4
                : 2
                : 022004
                Article
                10.1088/2053-1583/aa6432
                fee10704-d7a8-405f-a7c5-adb3226ccf42
                © 2017

                http://iopscience.iop.org/info/page/text-and-data-mining

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article