2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Prostaglandin E 2 decrease in induced sputum of hypersensitive asthmatics during oral challenge with aspirin

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Prostanoid receptors: structures, properties, and functions.

          Prostanoids are the cyclooxygenase metabolites of arachidonic acid and include prostaglandin (PG) D(2), PGE(2), PGF(2alpha), PGI(2), and thromboxne A(2). They are synthesized and released upon cell stimulation and act on cells in the vicinity of their synthesis to exert their actions. Receptors mediating the actions of prostanoids were recently identified and cloned. They are G protein-coupled receptors with seven transmembrane domains. There are eight types and subtypes of prostanoid receptors that are encoded by different genes but as a whole constitute a subfamily in the superfamily of the rhodopsin-type receptors. Each of the receptors was expressed in cultured cells, and its ligand-binding properties and signal transduction pathways were characterized. Moreover, domains and amino acid residues conferring the specificities of ligand binding and signal transduction are being clarified. Information also is accumulating as to the distribution of these receptors in the body. It is also becoming clear for some types of receptors how expression of their genes is regulated. Furthermore, the gene for each of the eight types of prostanoid receptor has been disrupted, and mice deficient in each type of receptor are being examined to identify and assess the roles played by each receptor under various physiological and pathophysiological conditions. In this article, we summarize these findings and attempt to give an overview of the current status of research on the prostanoid receptors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of immune responses by prostaglandin E2.

            PGE(2), an essential homeostatic factor, is also a key mediator of immunopathology in chronic infections and cancer. The impact of PGE(2) reflects the balance between its cyclooxygenase 2-regulated synthesis and 15-hydroxyprostaglandin dehydrogenase-driven degradation and the pattern of expression of PGE(2) receptors. PGE(2) enhances its own production but suppresses acute inflammatory mediators, resulting in its predominance at late/chronic stages of immunity. PGE(2) supports activation of dendritic cells but suppresses their ability to attract naive, memory, and effector T cells. PGE(2) selectively suppresses effector functions of macrophages and neutrophils and the Th1-, CTL-, and NK cell-mediated type 1 immunity, but it promotes Th2, Th17, and regulatory T cell responses. PGE(2) modulates chemokine production, inhibiting the attraction of proinflammatory cells while enhancing local accumulation of regulatory T cells cells and myeloid-derived suppressor cells. Targeting the production, degradation, and responsiveness to PGE(2) provides tools to modulate the patterns of immunity in a wide range of diseases, from autoimmunity to cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prostaglandins and leukotrienes: advances in eicosanoid biology.

              C D Funk (2001)
              Prostaglandins and leukotrienes are potent eicosanoid lipid mediators derived from phospholipase-released arachidonic acid that are involved in numerous homeostatic biological functions and inflammation. They are generated by cyclooxygenase isozymes and 5-lipoxygenase, respectively, and their biosynthesis and actions are blocked by clinically relevant nonsteroidal anti-inflammatory drugs, the newer generation coxibs (selective inhibitors of cyclooxygenase-2), and leukotriene modifiers. The prime mode of prostaglandin and leukotriene action is through specific G protein-coupled receptors, many of which have been cloned recently, thus enabling specific receptor agonist and antagonist development. Important insights into the mechanisms of inflammatory responses, pain, and fever have been gleaned from our current understanding of eicosanoid biology.
                Bookmark

                Author and article information

                Contributors
                Journal
                Allergy
                Allergy
                Wiley
                0105-4538
                1398-9995
                January 15 2019
                May 2019
                December 05 2018
                May 2019
                : 74
                : 5
                : 922-932
                Affiliations
                [1 ]Department of Internal Medicine Jagiellonian University School of Medicine Cracow Poland
                [2 ]Coronary and Heart Failure Department Jagiellonian University School of Medicine John Paul II Hospital Cracow Poland
                [3 ]Department of Applied Mathematics AGH University of Science and Technology Cracow Poland
                [4 ]Department of Oncological and Reconstructive Surgery The Maria Sklodowska‐Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch Gliwice Poland
                Article
                10.1111/all.13671
                30446997
                fee7d617-0fdd-47cf-9c1e-6b3c2f189740
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Quantitative & Systems biology,Biophysics
                Quantitative & Systems biology, Biophysics

                Comments

                Comment on this article