13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bacterial community diversity and its potential contributions to the flavor components of traditional smoked horsemeat sausage in Xinjiang, China

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Smoked horsemeat sausage is a famous fermented traditional food in Xinjiang, China. However, the microbial diversity and its potential contributions to the flavor components of smoked horsemeat sausage are unclear. In this study, the microbial community and flavor components of smoked horsemeat sausage from six regions of Xinjiang were measured by using amplicon sequencing and headspace solid-phase microextraction combined with gas chromatography–mass spectrometry (HS-SPME-GC–MS) technology, respectively. Relations among microbial communities, flavor components and environmental factors were subsequently predicted based on redundancy analysis (RDA) and Monte Carlo permutation tests. Although smoked horsemeat sausage samples from different regions possessed distinct microbial communities, lactic acid bacteria (LAB) were identified as the dominant consortium in smoked horsemeat sausage. Lactobacillus, Vagococcus, Lactococcus, and Carnobacterium were detected at high abundance in different sausages. The moisture content, nitrite content, and pH of the sausage might be important factors influencing the dominant bacterial community, according to the RDA. Among the dominant consortia, the eight core bacterial genera showed considerable correlations with the formation of sixteen volatile compounds in smoked horsemeat sausage based on multivariate statistical analysis. For example, the levels of Leuconostoc and Lactobacillus were positively correlated with those of 1-hexadecanol, hexyl acetate, 2-methyl-phenol, 1-pentanol, d-limonene, and 2-heptanone, and the levels of Leuconostoc, Lactobacillus, and Weissella were negatively correlated with those of 1-octanol, acetic acid, octanal, heptanal, and 1-hexanol. This study will provide a theoretical basis for understanding the microbial metabolic modes of Xinjiang smoked horsemeat sausages.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences

          Profiling phylogenetic marker genes, such as the 16S rRNA gene, is a key tool for studies of microbial communities but does not provide direct evidence of a community’s functional capabilities. Here we describe PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States), a computational approach to predict the functional composition of a metagenome using marker gene data and a database of reference genomes. PICRUSt uses an extended ancestral-state reconstruction algorithm to predict which gene families are present and then combines gene families to estimate the composite metagenome. Using 16S information, PICRUSt recaptures key findings from the Human Microbiome Project and accurately predicts the abundance of gene families in host-associated and environmental communities, with quantifiable uncertainty. Our results demonstrate that phylogeny and function are sufficiently linked that this ‘predictive metagenomic’ approach should provide useful insights into the thousands of uncultivated microbial communities for which only marker gene surveys are currently available.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional meat starter cultures for improved sausage fermentation.

            Starter cultures that initiate rapid acidification of the raw meat batter and that lead to a desirable sensory quality of the end-product are used for the production of fermented sausages. Recently, the use of new, functional starter cultures with an industrially or nutritionally important functionality is being explored. Functional starter cultures offer an additional functionality compared to classical starter cultures and represent a way of improving and optimising the sausage fermentation process and achieving tastier, safer, and healthier products. Examples include microorganisms that generate aroma compounds, health-promoting molecules, bacteriocins or other antimicrobials, contribute to cured meat colour, possess probiotic qualities, or lack negative properties such as the production of biogenic amines and toxic compounds. The vast quantity of artisan fermented sausages from different origins represents a treasure chest of biodiversity that can be exploited to create such functional starter cultures.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The role of bacterial fermentation in lipolysis and lipid oxidation in Harbin dry sausages and its flavour development

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                27 July 2022
                2022
                : 13
                : 942932
                Affiliations
                [1] 1College of Life and Geographical Sciences, Kashi University , Kashi, China
                [2] 2Food College, Shihezi University , Shihezi, China
                [3] 3College of Enology, Northwest A&F University , Yangling, China
                [4] 4Xinjiang Academy of Analysis and Testing , Wulumuqi, China
                Author notes

                Edited by: Jia-Sheng Wang, University of Georgia, United States

                Reviewed by: Carolina Muñoz-Gonzalez, Spanish National Research Council (CSIC), Spain; Zhuang Guo, Hubei University of Arts and Science, China

                *Correspondence: Bin Wang, binwang0228@ 123456shzu.edu.cn

                These authors have contributed equally to this work

                This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2022.942932
                9365192
                fef3fc26-3c4c-47c9-b203-a0cc4483ec3d
                Copyright © 2022 Jiang, Chen, Deng, Liu, Wang, Shi and Wang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 May 2022
                : 05 July 2022
                Page count
                Figures: 6, Tables: 2, Equations: 0, References: 47, Pages: 15, Words: 9262
                Funding
                Funded by: Xinjiang Production and Construction Corps, doi 10.13039/501100009967;
                Funded by: National Natural Science Foundation of China, doi 10.13039/501100001809;
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                smoked horsemeat sausages,microbial community,volatile compounds,physicochemical characteristic,correlation

                Comments

                Comment on this article