5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prognostic Factors for Checkpoint Inhibitor Based Immunotherapy: An Update With New Evidences

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Checkpoint inhibitor (CPI) based immunotherapy (i.e., anit-CTLA-4/PD-1/PD-L1 antibodies) can effectively prolong overall survival of patients across several cancer types at the advanced stage. However, only part of patients experience objective responses from such treatments, illustrating large individual differences in terms of both efficacy and adverse drug reactions. Through the observation on a series of CPI based clinical trials in independent patient cohorts, associations of multiple clinical and molecular characteristics with CPI response rate have been determined, including microenvironment, genomic alterations of the cancer cells, and even gut microbiota. A broad interest has been drawn to the question whether and how these prognostic factors can be used as biomarkers for optimal usage of CPIs in precision immunotherapy. Therefore, we reviewed the candidate prognostic factors identified by multiple trials and the experimental investigations, especially those reported in the recent 2 years, and described the possibilities and problems of them in routine clinical usage of cancer treatment as biomarkers.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          The blockade of immune checkpoints in cancer immunotherapy.

          Among the most promising approaches to activating therapeutic antitumour immunity is the blockade of immune checkpoints. Immune checkpoints refer to a plethora of inhibitory pathways hardwired into the immune system that are crucial for maintaining self-tolerance and modulating the duration and amplitude of physiological immune responses in peripheral tissues in order to minimize collateral tissue damage. It is now clear that tumours co-opt certain immune-checkpoint pathways as a major mechanism of immune resistance, particularly against T cells that are specific for tumour antigens. Because many of the immune checkpoints are initiated by ligand-receptor interactions, they can be readily blocked by antibodies or modulated by recombinant forms of ligands or receptors. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) antibodies were the first of this class of immunotherapeutics to achieve US Food and Drug Administration (FDA) approval. Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effector memory T cells, early metastasis, and survival in colorectal cancer.

            The role of tumor-infiltrating immune cells in the early metastatic invasion of colorectal cancer is unknown. We studied pathological signs of early metastatic invasion (venous emboli and lymphatic and perineural invasion) in 959 specimens of resected colorectal cancer. The local immune response within the tumor was studied by flow cytometry (39 tumors), low-density-array real-time polymerase-chain-reaction assay (75 tumors), and tissue microarrays (415 tumors). Univariate analysis showed significant differences in disease-free and overall survival according to the presence or absence of histologic signs of early metastatic invasion (P<0.001). Multivariate Cox analysis showed that an early conventional pathological tumor-node-metastasis stage (P<0.001) and the absence of early metastatic invasion (P=0.04) were independently associated with increased survival. As compared with tumors with signs of early metastatic invasion, tumors without such signs had increased infiltrates of immune cells and increased levels of messenger RNA (mRNA) for products of type 1 helper effector T cells (CD8, T-BET [T-box transcription factor 21], interferon regulatory factor 1, interferon-gamma, granulysin, and granzyme B) but not increased levels of inflammatory mediators or immunosuppressive molecules. The two types of tumors had significant differences in the levels of expression of 65 combinations of T-cell markers, and hierarchical clustering showed that markers of T-cell migration, activation, and differentiation were increased in tumors without signs of early metastatic invasion. The latter type of tumors also had increased numbers of CD8+ T cells, ranging from early memory (CD45RO+CCR7-CD28+CD27+) to effector memory (CD45RO+CCR7-CD28-CD27-) T cells. The presence of high levels of infiltrating memory CD45RO+ cells, evaluated immunohistochemically, correlated with the absence of signs of early metastatic invasion, a less advanced pathological stage, and increased survival. Signs of an immune response within colorectal cancers are associated with the absence of pathological evidence of early metastatic invasion and with prolonged survival. Copyright 2005 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints

              Despite compelling antitumour activity of antibodies targeting the programmed death 1 (PD-1): programmed death ligand 1 (PD-L1) immune checkpoint in lung cancer, resistance to these therapies has increasingly been observed. In this study, to elucidate mechanisms of adaptive resistance, we analyse the tumour immune microenvironment in the context of anti-PD-1 therapy in two fully immunocompetent mouse models of lung adenocarcinoma. In tumours progressing following response to anti-PD-1 therapy, we observe upregulation of alternative immune checkpoints, notably T-cell immunoglobulin mucin-3 (TIM-3), in PD-1 antibody bound T cells and demonstrate a survival advantage with addition of a TIM-3 blocking antibody following failure of PD-1 blockade. Two patients who developed adaptive resistance to anti-PD-1 treatment also show a similar TIM-3 upregulation in blocking antibody-bound T cells at treatment failure. These data suggest that upregulation of TIM-3 and other immune checkpoints may be targetable biomarkers associated with adaptive resistance to PD-1 blockade.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                20 September 2018
                2018
                : 9
                : 1050
                Affiliations
                [1] 1Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University , Chengdu, China
                [2] 2State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
                [3] 3State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center , Chengdu, China
                [4] 4Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine, Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center , Chengdu, China
                Author notes

                Edited by: Jie Xu, Shanghai Jiao Tong University, China

                Reviewed by: Wang Jinhui, Harbin Medical University, China; Chunliang Li, St. Jude Children’s Research Hospital, United States

                *Correspondence: Heng Xu, xuheng81916@ 123456scu.edu.cn

                These authors have contributed equally to this work

                This article was submitted to Pharmacology of Anti-Cancer Drugs, a section of the journal Frontiers in Pharmacology

                Article
                10.3389/fphar.2018.01050
                6159743
                30294272
                ff135071-68c6-4772-9276-ac4ba8c09036
                Copyright © 2018 Yan, Zhang, Deng, Wang, Hou and Xu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 09 July 2018
                : 31 August 2018
                Page count
                Figures: 1, Tables: 4, Equations: 0, References: 195, Pages: 17, Words: 0
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 81522028
                Award ID: 81400120
                Award ID: 81673452
                Categories
                Pharmacology
                Review

                Pharmacology & Pharmaceutical medicine
                immunotherapy,checkpoint inhibitor,pd-1,pd-l1,ctla-4
                Pharmacology & Pharmaceutical medicine
                immunotherapy, checkpoint inhibitor, pd-1, pd-l1, ctla-4

                Comments

                Comment on this article